These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 26994464)
1. Time variability of the north-western Mediterranean Sea pH over 1995-2011. Marcellin Yao K; Marcou O; Goyet C; Guglielmi V; Touratier F; Savy JP Mar Environ Res; 2016 May; 116():51-60. PubMed ID: 26994464 [TBL] [Abstract][Full Text] [Related]
2. Decadal acidification in the water masses of the Atlantic Ocean. Ríos AF; Resplandy L; García-Ibáñez MI; Fajar NM; Velo A; Padin XA; Wanninkhof R; Steinfeldt R; Rosón G; Pérez FF Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9950-5. PubMed ID: 26216947 [TBL] [Abstract][Full Text] [Related]
3. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Dore JE; Lukas R; Sadler DW; Church MJ; Karl DM Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12235-40. PubMed ID: 19666624 [TBL] [Abstract][Full Text] [Related]
4. Acidification state and interannual variability in marginal sea: A case study of the Bohai and the Yellow Seas surface waters in April 2023. Wang Z; Liu S; Song J; Wen L; Yuan H; Duan L; He Z; Li X Environ Res; 2024 Oct; 259():119536. PubMed ID: 38964577 [TBL] [Abstract][Full Text] [Related]
5. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO₂. Liu Y; Peng Z; Zhou R; Song S; Liu W; You CF; Lin YP; Yu K; Wu CC; Wei G; Xie L; Burr GS; Shen CC Sci Rep; 2014 Jun; 4():5148. PubMed ID: 24888785 [TBL] [Abstract][Full Text] [Related]
6. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Bates NR; Pequignet AC; Johnson RJ; Gruber N Nature; 2002 Dec; 420(6915):489-93. PubMed ID: 12487116 [TBL] [Abstract][Full Text] [Related]
7. Interannual variability in the North Atlantic Ocean carbon sink. Gruber N; Keeling CD; Bates NR Science; 2002 Dec; 298(5602):2374-8. PubMed ID: 12493911 [TBL] [Abstract][Full Text] [Related]
8. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Kamya PZ; Dworjanyn SA; Hardy N; Mos B; Uthicke S; Byrne M Glob Chang Biol; 2014 Nov; 20(11):3365-76. PubMed ID: 24615941 [TBL] [Abstract][Full Text] [Related]
9. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Gianguzza P; Visconti G; Gianguzza F; Vizzini S; Sarà G; Dupont S Mar Environ Res; 2014 Feb; 93():70-7. PubMed ID: 23962538 [TBL] [Abstract][Full Text] [Related]
10. Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles? Bressan M; Chinellato A; Munari M; Matozzo V; Manci A; Marčeta T; Finos L; Moro I; Pastore P; Badocco D; Marin MG Mar Environ Res; 2014 Aug; 99():136-48. PubMed ID: 24836120 [TBL] [Abstract][Full Text] [Related]
11. The significance of the North Atlantic Oscillation (NAO) for sea-salt episodes and acidification-related effects in Norwegian rivers. Hindar A; Tørseth K; Henriksen A; Orsolini Y Environ Sci Technol; 2004 Jan; 38(1):26-33. PubMed ID: 14740713 [TBL] [Abstract][Full Text] [Related]
12. Southeastern Yellow Sea as a sink for atmospheric carbon dioxide. Choi Y; Kim D; Cho S; Kim TW Mar Pollut Bull; 2019 Dec; 149():110550. PubMed ID: 31543487 [TBL] [Abstract][Full Text] [Related]
13. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. García E; Clemente S; Hernández JC Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754 [TBL] [Abstract][Full Text] [Related]
14. Seasonal variation in aragonite saturation states and the controlling factors in the southeastern Yellow Sea. Choi Y; Cho S; Kim D Mar Pollut Bull; 2020 Jan; 150():110695. PubMed ID: 31740181 [TBL] [Abstract][Full Text] [Related]
15. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification. Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465 [TBL] [Abstract][Full Text] [Related]
16. Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater. Iglesias-Rodriguez MD; Jones BM; Blanco-Ameijeiras S; Greaves M; Huete-Ortega M; Lebrato M PLoS One; 2017; 12(7):e0181713. PubMed ID: 28750008 [TBL] [Abstract][Full Text] [Related]
17. Enhanced open ocean storage of CO2 from shelf sea pumping. Thomas H; Bozec Y; Elkalay K; de Baar HJ Science; 2004 May; 304(5673):1005-8. PubMed ID: 15143279 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Evans TG; Chan F; Menge BA; Hofmann GE Mol Ecol; 2013 Mar; 22(6):1609-25. PubMed ID: 23317456 [TBL] [Abstract][Full Text] [Related]
19. Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification. Pfister CA; Cardini U; Mirasole A; Montilla LM; Veseli I; Gattuso JP; Teixido N Sci Rep; 2023 Nov; 13(1):19996. PubMed ID: 37968499 [TBL] [Abstract][Full Text] [Related]
20. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. Reum JC; Alin SR; Feely RA; Newton J; Warner M; McElhany P PLoS One; 2014; 9(2):e89619. PubMed ID: 24586915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]