BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26994831)

  • 1. Rapid and specific gray matter changes in M1 induced by balance training.
    Taubert M; Mehnert J; Pleger B; Villringer A
    Neuroimage; 2016 Jun; 133():399-407. PubMed ID: 26994831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colocalized White Matter Plasticity and Increased Cerebral Blood Flow Mediate the Beneficial Effect of Cardiovascular Exercise on Long-Term Motor Learning.
    Lehmann N; Villringer A; Taubert M
    J Neurosci; 2020 Mar; 40(12):2416-2429. PubMed ID: 32041897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes.
    Seidel O; Carius D; Kenville R; Ragert P
    J Neurophysiol; 2017 Sep; 118(3):1849-1860. PubMed ID: 28659467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between excitability, plasticity and thickness of the motor cortex in older adults.
    List J; Kübke JC; Lindenberg R; Külzow N; Kerti L; Witte V; Flöel A
    Neuroimage; 2013 Dec; 83():809-16. PubMed ID: 23876242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased functional connectivity is crucial for learning novel muscle synergies.
    McNamara A; Tegenthoff M; Dinse H; Büchel C; Binkofski F; Ragert P
    Neuroimage; 2007 Apr; 35(3):1211-8. PubMed ID: 17329130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interindividual differences in gray and white matter properties are associated with early complex motor skill acquisition.
    Lehmann N; Tolentino-Castro JW; Kaminski E; Ragert P; Villringer A; Taubert M
    Hum Brain Mapp; 2019 Oct; 40(15):4316-4330. PubMed ID: 31264300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Unicycling Evokes Manifold Changes in Gray and White Matter Networks Related to Motor and Cognitive Functions.
    Weber B; Koschutnig K; Schwerdtfeger A; Rominger C; Papousek I; Weiss EM; Tilp M; Fink A
    Sci Rep; 2019 Mar; 9(1):4324. PubMed ID: 30867464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention.
    Sampaio-Baptista C; Scholz J; Jenkinson M; Thomas AG; Filippini N; Smit G; Douaud G; Johansen-Berg H
    Neuroimage; 2014 Aug; 96():158-66. PubMed ID: 24680712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural brain plasticity in Parkinson's disease induced by balance training.
    Sehm B; Taubert M; Conde V; Weise D; Classen J; Dukart J; Draganski B; Villringer A; Ragert P
    Neurobiol Aging; 2014 Jan; 35(1):232-9. PubMed ID: 23916062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid microstructural plasticity in the cortical semantic network following a short language learning session.
    Vukovic N; Hansen B; Lund TE; Jespersen S; Shtyrov Y
    PLoS Biol; 2021 Jun; 19(6):e3001290. PubMed ID: 34125828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.
    Plautz EJ; Milliken GW; Nudo RJ
    Neurobiol Learn Mem; 2000 Jul; 74(1):27-55. PubMed ID: 10873519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional MRI evidence for adult motor cortex plasticity during motor skill learning.
    Karni A; Meyer G; Jezzard P; Adams MM; Turner R; Ungerleider LG
    Nature; 1995 Sep; 377(6545):155-8. PubMed ID: 7675082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early stages of motor skill learning and the specific relevance of the cortical motor system--a combined behavioural training and θ burst TMS study.
    Platz T; Roschka S; Christel MI; Duecker F; Rothwell JC; Sack AT
    Restor Neurol Neurosci; 2012; 30(3):199-211. PubMed ID: 22398421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid language-related plasticity: microstructural changes in the cortex after a short session of new word learning.
    Hofstetter S; Friedmann N; Assaf Y
    Brain Struct Funct; 2017 Apr; 222(3):1231-1241. PubMed ID: 27449063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.
    Bailey JA; Zatorre RJ; Penhune VB
    J Cogn Neurosci; 2014 Apr; 26(4):755-67. PubMed ID: 24236696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections.
    Taubert M; Draganski B; Anwander A; Müller K; Horstmann A; Villringer A; Ragert P
    J Neurosci; 2010 Sep; 30(35):11670-7. PubMed ID: 20810887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training.
    Stefan K; Wycislo M; Gentner R; Schramm A; Naumann M; Reiners K; Classen J
    Cereb Cortex; 2006 Mar; 16(3):376-85. PubMed ID: 15930370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term plasticity following motor sequence learning revealed by diffusion magnetic resonance imaging.
    Tavor I; Botvinik-Nezer R; Bernstein-Eliav M; Tsarfaty G; Assaf Y
    Hum Brain Mapp; 2020 Feb; 41(2):442-452. PubMed ID: 31596547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive learning is associated with gray matter changes in the right hippocampus.
    Koch K; Reess TJ; Rus OG; Zimmer C
    Neuroimage; 2016 Jan; 125():627-632. PubMed ID: 26518629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral correlates of changes in hippocampal gray matter structure during acquisition of foreign vocabulary.
    Bellander M; Berggren R; Mårtensson J; Brehmer Y; Wenger E; Li TQ; Bodammer NC; Shing YL; Werkle-Bergner M; Lövdén M
    Neuroimage; 2016 May; 131():205-13. PubMed ID: 26477659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.