These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 26994840)
41. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
42. Activity of Bacillus thuringiensis delta-endotoxins against codling moth (Cydia pomonella L.) larvae. Boncheva R; Dukiandjiev S; Minkov I; de Maagd RA; Naimov S J Invertebr Pathol; 2006 Jun; 92(2):96-9. PubMed ID: 16530218 [TBL] [Abstract][Full Text] [Related]
43. Persistence of insecticidal Cry toxins in Bt rice residues under field conditions estimated by biological and immunological assays. Deng J; Wang Y; Yang F; Liu Y; Liu B Sci Total Environ; 2019 Aug; 679():45-51. PubMed ID: 31078774 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of Bt (Bacillus thuringiensis) rice varieties against stem borer (Chilo suppressalis). Kiani G; Nematzadeh GA; Ghareyazie B; Sattari M Pak J Biol Sci; 2008 Feb; 11(4):648-51. PubMed ID: 18817142 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of the synergistic activities of Bacillus thuringiensis Cry proteins against Helicoverpa armigera (Lepidoptera: Noctuidae). Li H; Bouwer G J Invertebr Pathol; 2014 Sep; 121():7-13. PubMed ID: 24963598 [TBL] [Abstract][Full Text] [Related]
46. Specific binding between Wang Z; Fang L; Zhou Z; Pacheco S; Gómez I; Song F; Soberón M; Zhang J; Bravo A J Biol Chem; 2018 Jul; 293(29):11447-11458. PubMed ID: 29858245 [TBL] [Abstract][Full Text] [Related]
47. Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin. Qiu L; Fan J; Liu L; Zhang B; Wang X; Lei C; Lin Y; Ma W Sci Rep; 2017 Mar; 7():43964. PubMed ID: 28262736 [TBL] [Abstract][Full Text] [Related]
48. Development and relative fitness of Cry1C resistance in Chilo suppressalis. Tang H; Chen G; Chen F; Han L; Peng Y Pest Manag Sci; 2018 Mar; 74(3):590-597. PubMed ID: 28941326 [TBL] [Abstract][Full Text] [Related]
49. Diversity and distribution of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Argentina. Sauka DH; Benintende GB Rev Argent Microbiol; 2017; 49(3):273-281. PubMed ID: 28576334 [TBL] [Abstract][Full Text] [Related]
50. Heritability of tolerance to the Cry1Ab toxin of Bacillus thuringiensis in Chilo suppressalis (Lepidoptera: Crambidae). Alinia F; Cohen MB; Gould F J Econ Entomol; 2000 Feb; 93(1):14-7. PubMed ID: 14658505 [TBL] [Abstract][Full Text] [Related]
51. Extracellular loop structures in silkworm ABCC transporters determine their specificities for Endo H; Tanaka S; Adegawa S; Ichino F; Tabunoki H; Kikuta S; Sato R J Biol Chem; 2018 Jun; 293(22):8569-8577. PubMed ID: 29666188 [No Abstract] [Full Text] [Related]
52. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related]
53. Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. Li H; Bouwer G J Invertebr Pathol; 2012 Jan; 109(1):110-6. PubMed ID: 22019386 [TBL] [Abstract][Full Text] [Related]
54. Toxicity of Bacillus thuringiensis delta-endotoxins against bean shoot borer (Epinotia aporema Wals.) larvae, a major soybean pest in Argentina. Sauka DH; Sánchez J; Bravo A; Benintende GB J Invertebr Pathol; 2007 Feb; 94(2):125-9. PubMed ID: 17069845 [TBL] [Abstract][Full Text] [Related]
55. Susceptibility of Cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. Wu X; Rogers Leonard B; Zhu YC; Abel CA; Head GP; Huang F J Invertebr Pathol; 2009 Jan; 100(1):29-34. PubMed ID: 18955062 [TBL] [Abstract][Full Text] [Related]
56. Impacts of Bt rice on non-target organisms assessed by the hazard quotient (HQ). Dang C; Zhou X; Sun C; Wang F; Peng Y; Ye G Ecotoxicol Environ Saf; 2021 Jan; 207():111214. PubMed ID: 32890949 [TBL] [Abstract][Full Text] [Related]
57. Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen. Hellmich RL; Siegfried BD; Sears MK; Stanley-Horn DE; Daniels MJ; Mattila HR; Spencer T; Bidne KG; Lewis LC Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11925-30. PubMed ID: 11559841 [TBL] [Abstract][Full Text] [Related]
58. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L) from lowland Malaysia. Sayyed AH; Wright DJ Pest Manag Sci; 2001 May; 57(5):413-21. PubMed ID: 11374157 [TBL] [Abstract][Full Text] [Related]
59. Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Fujimoto H; Itoh K; Yamamoto M; Kyozuka J; Shimamoto K Biotechnology (N Y); 1993 Oct; 11(10):1151-5. PubMed ID: 7764096 [TBL] [Abstract][Full Text] [Related]
60. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera: Crambidae). Wang Y; Zhang L; Li Y; Liu Y; Han L; Zhu Z; Wang F; Peng Y Environ Entomol; 2014 Apr; 43(2):528-36. PubMed ID: 24495566 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]