BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26994867)

  • 1. Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double-Crossover Tiles.
    De Stefano M; Vesterager Gothelf K
    Chembiochem; 2016 Jun; 17(12):1122-6. PubMed ID: 26994867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing DNA nanostructures through reversible disulfide crosslinking.
    Wolfrum M; Schwarz RJ; Schwarz M; Kramer M; Richert C
    Nanoscale; 2019 Aug; 11(31):14921-14928. PubMed ID: 31360975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of double-stranded oligonucleotides using backbone-linked disulfide bridges.
    Gao H; Yang M; Cook AF
    Nucleic Acids Res; 1995 Jan; 23(2):285-92. PubMed ID: 7862534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
    Shi X; Lu W; Wang Z; Pan L; Cui G; Xu J; LaBean TH
    Nanotechnology; 2014 Feb; 25(7):075602. PubMed ID: 24451169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, dynamic combinatorial chemistry, and PCR amplification of 3'-5' and 3'-6' disulfide-linked oligonucleotides.
    Hansen DJ; Manuguerra I; Kjelstrup MB; Gothelf KV
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14415-8. PubMed ID: 25413927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures.
    Cassinelli V; Oberleitner B; Sobotta J; Nickels P; Grossi G; Kempter S; Frischmuth T; Liedl T; Manetto A
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7795-8. PubMed ID: 25980669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous and Programmable Reorganization of DNA-Based Polymers Using Redox Chemistry.
    Gentile S; Del Grosso E; Prins LJ; Ricci F
    Chemistry; 2023 May; 29(30):e202300394. PubMed ID: 37076949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hairpin-shaped DNA duplexes with disulfide bonds in sugar-phosphate backbone as potential DNA reagents for crosslinking with proteins.
    Dolinnaya N; Metelev V; Oretskaya T; Tabatadze D; Shabarova Z
    FEBS Lett; 1999 Feb; 444(2-3):285-90. PubMed ID: 10050776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of fully addressable DNA nanostructures from double crossover tiles.
    Wang W; Lin T; Zhang S; Bai T; Mi Y; Wei B
    Nucleic Acids Res; 2016 Sep; 44(16):7989-96. PubMed ID: 27484479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural arrangement of DNA constrained by a cross-linker.
    Endo M; Majima T
    Org Biomol Chem; 2005 Oct; 3(19):3476-8. PubMed ID: 16172682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Chemical ligation and recombination of DNA fragments by formation (exchange) of disulfide bonds, located in the sugar-phosphate backbone].
    Dolinnaia NG; Metelev VG
    Bioorg Khim; 2000 Apr; 26(4):306-14. PubMed ID: 10857023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Biocompatible Stability of DNA Nanostructures Using Dendritic Oligonucleotides and Brick Motifs.
    Kim Y; Yin P
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):700-703. PubMed ID: 31595637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Nanostructures as Catalysts: Double Crossover Tile-Assisted 5' to 5' and 3' to 3' Chemical Ligation of Oligonucleotides.
    Bardales AC; Mills JR; Kolpashchikov DM
    Bioconjug Chem; 2024 Jan; 35(1):28-33. PubMed ID: 38135674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoramidate Ligation of Oligonucleotides in Nanoscale Structures.
    Kalinowski M; Haug R; Said H; Piasecka S; Kramer M; Richert C
    Chembiochem; 2016 Jun; 17(12):1150-5. PubMed ID: 27225865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of aluminium-salen coupled nanostructures from encoded modules with cleavable disulfide DNA-linkers.
    Brown RS; Nielsen M; Gothelf KV
    Chem Commun (Camb); 2004 Jul; (13):1464-5. PubMed ID: 15216332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent tethering of protruding arms for addressable DNA nanostructures.
    Saccà B; Niemeyer CM
    Small; 2011 Oct; 7(20):2887-98. PubMed ID: 21901826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational flexibility facilitates self-assembly of complex DNA nanostructures.
    Zhang C; Su M; He Y; Zhao X; Fang PA; Ribbe AE; Jiang W; Mao C
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10665-9. PubMed ID: 18667705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fullerene Cluster Assisted Self-Assembly of Short DNA Strands into Semiconducting Nanowires.
    Vittala SK; Saraswathi SK; Joseph J
    Chemistry; 2017 Nov; 23(62):15759-15765. PubMed ID: 28858402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.