BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26994918)

  • 1. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis.
    Yao Y; Lacroix D; Mak AF
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1495-1508. PubMed ID: 26994918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics.
    Slomka N; Gefen A
    J Biomech; 2010 Jun; 43(9):1806-16. PubMed ID: 20188374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of oxidative stress on the compressive damage thresholds of C2C12 mouse myoblasts: implications for deep tissue injury.
    Yao Y; Xiao Z; Wong S; Hsu YC; Cheng T; Chang CC; Bian L; Mak AF
    Ann Biomed Eng; 2015 Feb; 43(2):287-96. PubMed ID: 25558846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the effective shear modulus of the cytoplasm in cultured myoblasts subjected to compression using an inverse finite element method.
    Slomka N; Oomens CW; Gefen A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1559-66. PubMed ID: 21783166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression.
    Weafer PP; Ronan W; Jarvis SP; McGarry JP
    Bull Math Biol; 2013 Aug; 75(8):1284-303. PubMed ID: 23354930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-to-cell variability in deformations across compressed myoblasts.
    Slomka N; Gefen A
    J Biomech Eng; 2011 Aug; 133(8):081007. PubMed ID: 21950900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vimentin enhances cell elastic behavior and protects against compressive stress.
    Mendez MG; Restle D; Janmey PA
    Biophys J; 2014 Jul; 107(2):314-323. PubMed ID: 25028873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between strain levels and permeability of the plasma membrane in statically stretched myoblasts.
    Slomka N; Gefen A
    Ann Biomed Eng; 2012 Mar; 40(3):606-18. PubMed ID: 21979169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of human articular disk and its influence on TMJ loading studied with the finite element method.
    Tanaka E; Sasaki A; Tahmina K; Yamaguchi K; Mori Y; Tanne K
    J Oral Rehabil; 2001 Mar; 28(3):273-9. PubMed ID: 11394374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels.
    Formigli L; Meacci E; Sassoli C; Chellini F; Giannini R; Quercioli F; Tiribilli B; Squecco R; Bruni P; Francini F; Zecchi-Orlandini S
    J Cell Sci; 2005 Mar; 118(Pt 6):1161-71. PubMed ID: 15728255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis.
    Unterberger MJ; Schmoller KM; Wurm C; Bausch AR; Holzapfel GA
    Acta Biomater; 2013 Jul; 9(7):7343-53. PubMed ID: 23523535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method.
    Wang X; Zauel RR; Fyhrie DP
    J Biomech; 2008 Aug; 41(12):2654-8. PubMed ID: 18672244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological behavior of actin stress fibers in myoblasts after nanodissection: Effects of oxidative stress.
    Ma Z; Wu YS; Mak AF
    Biorheology; 2015; 52(3):225-34. PubMed ID: 26406783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico stress fibre content affects peak strain in cytoplasm and nucleus but not in the membrane for uniaxial substrate stretch.
    Abdalrahman T; Davies NH; Franz T
    Med Biol Eng Comput; 2021 Sep; 59(9):1933-1944. PubMed ID: 34392447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compression or tension? The stress distribution in the proximal femur.
    Rudman KE; Aspden RM; Meakin JR
    Biomed Eng Online; 2006 Feb; 5():12. PubMed ID: 16504005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.
    Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M
    Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells.
    Xue F; Lennon AB; McKayed KK; Campbell VA; Prendergast PJ
    Comput Methods Biomech Biomed Engin; 2015; 18(5):468-76. PubMed ID: 23947334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcelain versus composite inlays/onlays: effects of mechanical loads on stress distribution, adhesion, and crown flexure.
    Magne P; Belser UC
    Int J Periodontics Restorative Dent; 2003 Dec; 23(6):543-55. PubMed ID: 14703758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.