These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26995322)

  • 81. [Fe-Mn Binary Oxide Impregnated Chitosan Bead (FMCB): An Environmental Friendly Sorbent for Phosphate Removal].
    Fu J; Fan F; Li HN; Zhang GS
    Huan Jing Ke Xue; 2016 Dec; 37(12):4882-4890. PubMed ID: 29965332
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment.
    Mosa A; El-Ghamry A; Tolba M
    Chemosphere; 2018 May; 198():351-363. PubMed ID: 29421750
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Bioresour Technol; 2015 Jan; 175():391-5. PubMed ID: 25459847
    [TBL] [Abstract][Full Text] [Related]  

  • 84. High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar.
    Rahman S; Navarathna CM; Krishna Das N; Alchouron J; Reneau P; Stokes S; V K G Thirumalai R; Perez F; Barbary Hassan E; Mohan D; Pittman CU; Mlsna T
    J Colloid Interface Sci; 2021 Sep; 597():182-195. PubMed ID: 33866210
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La(OH)
    Zhang Y; Akindolie MS; Tian X; Wu B; Hu Q; Jiang Z; Wang L; Tao Y; Cao B; Qu J
    Bioresour Technol; 2021 Jan; 319():124232. PubMed ID: 33254456
    [TBL] [Abstract][Full Text] [Related]  

  • 86. La(OH)
    Liao T; Li T; Su X; Yu X; Song H; Zhu Y; Zhang Y
    Bioresour Technol; 2018 Sep; 263():207-213. PubMed ID: 29747097
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity.
    Chen T; Wei Y; Yang W; Liu C
    J Hazard Mater; 2021 Aug; 416():125822. PubMed ID: 34492784
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Phosphorus recovery and reuse in water bodies with simple ball-milled Ca-loaded biochar.
    Ai D; Ma H; Meng Y; Wei T; Wang B
    Sci Total Environ; 2023 Feb; 860():160502. PubMed ID: 36436628
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Carbon fiber paper@MgO films: in situ fabrication and high-performance removal capacity for phosphate anions.
    Ahmed S; Ashiq MN; Li D; Tang P; Feng Y
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34788-34792. PubMed ID: 30324363
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith.
    Krishnan KA; Haridas A
    J Hazard Mater; 2008 Apr; 152(2):527-35. PubMed ID: 17706344
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Engineered biochar from biofuel residue: characterization and its silver removal potential.
    Yao Y; Gao B; Wu F; Zhang C; Yang L
    ACS Appl Mater Interfaces; 2015 May; 7(19):10634-40. PubMed ID: 25923987
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry.
    Wang X; Liu N; Liu Y; Jiang L; Zeng G; Tan X; Liu S; Yin Z; Tian S; Li J
    Int J Environ Res Public Health; 2017 Oct; 14(10):. PubMed ID: 29019933
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions.
    Fan R; Chen CL; Lin JY; Tzeng JH; Huang CP; Dong C; Huang CP
    Bioresour Technol; 2019 Jan; 272():465-472. PubMed ID: 30390539
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Efficiency Recycling and Utilization of Phosphate from Wastewater Using LDHs-Modified Biochar.
    Ding C; Long X; Zeng G; Ouyang Y; Lei B; Zeng R; Wang J; Zhou Z
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833743
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl
    Reguyal F; Sarmah AK; Gao W
    J Hazard Mater; 2017 Jan; 321():868-878. PubMed ID: 27751606
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Phosphate removal from aqueous solution using calcium-rich biochar prepared by the pyrolysis of crab shells.
    Cao L; Ouyang Z; Chen T; Huang H; Zhang M; Tai Z; Long K; Sun C; Wang B
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89570-89584. PubMed ID: 35852743
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling.
    Li R; Wang JJ; Zhang Z; Awasthi MK; Du D; Dang P; Huang Q; Zhang Y; Wang L
    Sci Total Environ; 2018 Nov; 642():526-536. PubMed ID: 29908511
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Removal Performance and Mechanism of Emerging Pollutant Chloroquine Phosphate from Water by Iron and Magnesium Co-Modified Rape Straw Biochar.
    Sun H; He J; Liu Y; Ji X; Wang G; Yang X; Zhang Y
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110522
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Adsorption of phosphate from aqueous solution by hydrous zirconium oxide.
    Rodrigues LA; Maschio LJ; Coppio Lde S; Thim GP; da Silva ML
    Environ Technol; 2012 Jun; 33(10-12):1345-51. PubMed ID: 22856308
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation.
    Gong YP; Ni ZY; Xiong ZZ; Cheng LH; Xu XH
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8326-8335. PubMed ID: 28161864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.