These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26995609)

  • 1. Amides in Nature and Biocatalysis.
    Pitzer J; Steiner K
    J Biotechnol; 2016 Oct; 235():32-46. PubMed ID: 26995609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome.
    Goswami A; Van Lanen SG
    Mol Biosyst; 2015 Feb; 11(2):338-53. PubMed ID: 25418915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic Strategies for the Biosynthesis of N-Acyl Amino Acid Amides.
    Kua GKB; Nguyen GKT; Li Z
    Chembiochem; 2024 Feb; 25(4):e202300672. PubMed ID: 38051126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic amidation for industrial applications.
    Dorr BM; Fuerst DE
    Curr Opin Chem Biol; 2018 Apr; 43():127-133. PubMed ID: 29414531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing and engineering amide bond forming ligases for the synthesis of amides.
    Winn M; Richardson SM; Campopiano DJ; Micklefield J
    Curr Opin Chem Biol; 2020 Apr; 55():77-85. PubMed ID: 32058241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the development of new biocatalytic processes for practical pharmaceutical synthesis.
    Huisman GW; Collier SJ
    Curr Opin Chem Biol; 2013 Apr; 17(2):284-92. PubMed ID: 23462589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation.
    Lubberink M; Finnigan W; Schnepel C; Baldwin CR; Turner NJ; Flitsch SL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202205054. PubMed ID: 35595679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides.
    Petchey M; Cuetos A; Rowlinson B; Dannevald S; Frese A; Sutton PW; Lovelock S; Lloyd RC; Fairlamb IJS; Grogan G
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11584-11588. PubMed ID: 30035356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalysis: Enzymatic Synthesis for Industrial Applications.
    Wu S; Snajdrova R; Moore JC; Baldenius K; Bornscheuer UT
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):88-119. PubMed ID: 32558088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging enzymes for ATP regeneration in biocatalytic processes.
    Andexer JN; Richter M
    Chembiochem; 2015 Feb; 16(3):380-6. PubMed ID: 25619338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Merging enzymes with chemocatalysis for amide bond synthesis.
    Bering L; Craven EJ; Sowerby Thomas SA; Shepherd SA; Micklefield J
    Nat Commun; 2022 Jan; 13(1):380. PubMed ID: 35046426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides.
    Wood AJL; Weise NJ; Frampton JD; Dunstan MS; Hollas MA; Derrington SR; Lloyd RC; Quaglia D; Parmeggiani F; Leys D; Turner NJ; Flitsch SL
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14498-14501. PubMed ID: 28940631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Biocatalytic Promiscuity: Hydrolase-Catalyzed Reactions for Nonconventional Transformations.
    López-Iglesias M; Gotor-Fernández V
    Chem Rec; 2015 Aug; 15(4):743-59. PubMed ID: 26147872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amide Bond Formation Using 4-Coumarate: CoA Ligase from Arabidopsis thaliana.
    Mori T; Wanibuchi K; Morita H; Abe I
    Chem Pharm Bull (Tokyo); 2021 Aug; 69(8):717-720. PubMed ID: 34053981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Fluoromethylation as a Tool for ATP-Independent Ligation.
    Peng J; Hughes GR; Müller MM; Seebeck FP
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202312104. PubMed ID: 37955592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications.
    Schallmey A; Schallmey M
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7827-39. PubMed ID: 27502414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New generation of biocatalysts for organic synthesis.
    Nestl BM; Hammer SC; Nebel BA; Hauer B
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3070-95. PubMed ID: 24520044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida spp. redox machineries: an ample biocatalytic platform for practical applications and academic insights.
    Gamenara D; Domínguez de María P
    Biotechnol Adv; 2009; 27(3):278-85. PubMed ID: 19500548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalysts: beautiful creatures.
    Saibi W; Abdeljalil S; Masmoudi K; Gargouri A
    Biochem Biophys Res Commun; 2012 Sep; 426(3):289-93. PubMed ID: 22809500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of Oligopeptides Using ATP-Grasp Enzymes.
    Ogasawara Y; Dairi T
    Chemistry; 2017 Aug; 23(45):10714-10724. PubMed ID: 28488371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.