These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26995682)

  • 1. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park.
    Moran JJ; Whitmore LM; Isern NG; Romine MF; Riha KM; Inskeep WP; Kreuzer HW
    Extremophiles; 2016 May; 20(3):291-9. PubMed ID: 26995682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale analysis of autotroph-heterotroph interactions in a high-temperature microbial community.
    Hunt KA; Jennings RM; Inskeep WP; Carlson RP
    PLoS Comput Biol; 2018 Sep; 14(9):e1006431. PubMed ID: 30260956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park.
    Kozubal M; Macur RE; Korf S; Taylor WP; Ackerman GG; Nagy A; Inskeep WP
    Appl Environ Microbiol; 2008 Feb; 74(4):942-9. PubMed ID: 18083851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park.
    Jennings RM; Whitmore LM; Moran JJ; Kreuzer HW; Inskeep WP
    Appl Environ Microbiol; 2014 May; 80(9):2665-71. PubMed ID: 24532073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial iron cycling in acidic geothermal springs of yellowstone national park: integrating molecular surveys, geochemical processes, and isolation of novel fe-active microorganisms.
    Kozubal MA; Macur RE; Jay ZJ; Beam JP; Malfatti SA; Tringe SG; Kocar BD; Borch T; Inskeep WP
    Front Microbiol; 2012; 3():109. PubMed ID: 22470372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Isotope Probing for Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park.
    Fortney NW; He S; Kulkarni A; Friedrich MW; Holz C; Boyd ES; Roden EE
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park.
    Schubotz F; Meyer-Dombard DR; Bradley AS; Fredricks HF; Hinrichs KU; Shock EL; Summons RE
    Geobiology; 2013 Nov; 11(6):549-69. PubMed ID: 23981055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.
    Perner M; Hansen M; Seifert R; Strauss H; Koschinsky A; Petersen S
    Geobiology; 2013 Jul; 11(4):340-55. PubMed ID: 23647923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.
    Lin TJ; Breves EA; Dyar MD; Ver Eecke HC; Jamieson JW; Holden JF
    Geobiology; 2014 May; 12(3):200-11. PubMed ID: 24612368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terminal oxidase diversity and function in "Metallosphaera yellowstonensis": gene expression and protein modeling suggest mechanisms of Fe(II) oxidation in the sulfolobales.
    Kozubal MA; Dlakic M; Macur RE; Inskeep WP
    Appl Environ Microbiol; 2011 Mar; 77(5):1844-53. PubMed ID: 21239558
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Tothero GK; Hoover RL; Farag IF; Kaplan DI; Weisenhorn P; Emerson D; Chan CS
    Appl Environ Microbiol; 2024 Sep; 90(9):e0059924. PubMed ID: 39133000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.
    Akerman NH; Price RE; Pichler T; Amend JP
    Geobiology; 2011 Sep; 9(5):436-45. PubMed ID: 21884364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production.
    Cathalot C; Roussel EG; Perhirin A; Creff V; Donval JP; Guyader V; Roullet G; Gula J; Tamburini C; Garel M; Godfroy A; Sarradin PM
    Nat Commun; 2021 Nov; 12(1):6861. PubMed ID: 34824206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.
    Zhou X; Chen D; Tang D; Dong S; Guo C; Guo Z; Zhang Y
    Astrobiology; 2015 Jul; 15(7):523-37. PubMed ID: 26168395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.
    Beam JP; Bernstein HC; Jay ZJ; Kozubal MA; Jennings Rd; Tringe SG; Inskeep WP
    Front Microbiol; 2016; 7():25. PubMed ID: 26913020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests.
    Högberg P; Nordgren A; Högberg MN; Ottosson-Löfvenius M; Bhupinderpal-Singh ; Olsson P; Linder S
    SEB Exp Biol Ser; 2005; ():251-67. PubMed ID: 17633039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Origin of Heterotrophy.
    Schönheit P; Buckel W; Martin WF
    Trends Microbiol; 2016 Jan; 24(1):12-25. PubMed ID: 26578093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity in CO
    Scott KM; Leonard JM; Boden R; Chaput D; Dennison C; Haller E; Harmer TL; Anderson A; Arnold T; Budenstein S; Brown R; Brand J; Byers J; Calarco J; Campbell T; Carter E; Chase M; Cole M; Dwyer D; Grasham J; Hanni C; Hazle A; Johnson C; Johnson R; Kirby B; Lewis K; Neumann B; Nguyen T; Nino Charari J; Morakinyo O; Olsson B; Roundtree S; Skjerve E; Ubaldini A; Whittaker R
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium.
    Zavarzina DG; Kochetkova TV; Chistyakova NI; Gracheva MA; Antonova AV; Merkel AY; Perevalova AA; Chernov MS; Koksharov YA; Bonch-Osmolovskaya EA; Gavrilov SN; Bychkov AY
    Sci Rep; 2020 Dec; 10(1):21661. PubMed ID: 33303863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.