These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 26995682)
21. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Okibe N; Johnson DB Biotechnol Bioeng; 2004 Sep; 87(5):574-83. PubMed ID: 15352055 [TBL] [Abstract][Full Text] [Related]
22. The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon. Mardanov AV; Slododkina GB; Slobodkin AI; Beletsky AV; Gavrilov SN; Kublanov IV; Bonch-Osmolovskaya EA; Skryabin KG; Ravin NV Appl Environ Microbiol; 2015 Feb; 81(3):1003-12. PubMed ID: 25416759 [TBL] [Abstract][Full Text] [Related]
23. Interactions Between Autotrophic and Heterotrophic Strains Improve CO₂ Fixing Efficiency of Non-photosynthetic Microbial Communities. Hu J; Wang L; Zhang S; Xi X; Le Y; Fu X; Tsang Y; Gao M Appl Biochem Biotechnol; 2015 Jul; 176(5):1459-71. PubMed ID: 25947620 [TBL] [Abstract][Full Text] [Related]
24. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō'ihi Seamount, Hawai'i). Jesser KJ; Fullerton H; Hager KW; Moyer CL Appl Environ Microbiol; 2015 May; 81(9):2976-84. PubMed ID: 25681182 [TBL] [Abstract][Full Text] [Related]
26. Harnessing the power of microbial autotrophy. Claassens NJ; Sousa DZ; Dos Santos VA; de Vos WM; van der Oost J Nat Rev Microbiol; 2016 Nov; 14(11):692-706. PubMed ID: 27665719 [TBL] [Abstract][Full Text] [Related]
27. Peculiar citric acid cycle of hydrothermal vent chemolithoautotroph Hydrogenovibrio crunogenus, and insights into carbon metabolism by obligate autotrophs. Quasem I; Achille AN; Caddick BA; Carter TA; Daniels C; Delaney JA; Delic V; Denton KA; Duran MC; Fatica MK; Ference CM; Galkiewicz JP; Garcia AM; Hendrick JD; Horton SA; Kun MS; Koch PW; Lee TM; McCabe CR; McHale S; McDaniel LD; Menning DM; Menning KJ; Mirzaei-Souderjani H; Mostajabian S; Nicholson DA; Nugent CK; Osman NP; Pappas DI; Rocha AM; Rosario K; Rubelmann H; Schwartz JA; Seeley KW; Staley CM; Wallace EM; Wong TM; Zielinski BL; Hanson TE; Scott KM FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854673 [TBL] [Abstract][Full Text] [Related]
28. A comparative study revealed first insights into the diversity and metabolisms of the microbial communities in the sediments of Pacmanus and Desmos hydrothermal fields. Wang HL; Zhang J; Sun QL; Lian C; Sun L PLoS One; 2017; 12(7):e0181048. PubMed ID: 28704556 [TBL] [Abstract][Full Text] [Related]
29. Primary Formation Path of Formaldehyde in Hydrothermal Vents. Inaba S Orig Life Evol Biosph; 2018 Mar; 48(1):1-22. PubMed ID: 28875241 [TBL] [Abstract][Full Text] [Related]
30. Parameters Governing the Community Structure and Element Turnover in Kermadec Volcanic Ash and Hydrothermal Fluids as Monitored by Inorganic Electron Donor Consumption, Autotrophic CO Böhnke S; Sass K; Gonnella G; Diehl A; Kleint C; Bach W; Zitoun R; Koschinsky A; Indenbirken D; Sander SG; Kurtz S; Perner M Front Microbiol; 2019; 10():2296. PubMed ID: 31649639 [TBL] [Abstract][Full Text] [Related]
31. Thermal and geochemical influences on microbial biogeography in the hydrothermal sediments of Guaymas Basin, Gulf of California. McKay L; Klokman VW; Mendlovitz HP; LaRowe DE; Hoer DR; Albert D; Amend JP; Teske A Environ Microbiol Rep; 2016 Feb; 8(1):150-61. PubMed ID: 26637109 [TBL] [Abstract][Full Text] [Related]
32. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. Jahn U; Huber H; Eisenreich W; Hügler M; Fuchs G J Bacteriol; 2007 Jun; 189(11):4108-19. PubMed ID: 17400748 [TBL] [Abstract][Full Text] [Related]
33. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Johnson DB; Okibe N; Roberto FF Arch Microbiol; 2003 Jul; 180(1):60-8. PubMed ID: 12802481 [TBL] [Abstract][Full Text] [Related]
34. Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Li M; Toner BM; Baker BJ; Breier JA; Sheik CS; Dick GJ Nat Commun; 2014; 5():3192. PubMed ID: 24496055 [TBL] [Abstract][Full Text] [Related]
35. Sulfide oxidation by members of the Sulfolobales. Fernandes-Martins MC; Colman DR; Boyd ES PNAS Nexus; 2024 Jun; 3(6):pgae201. PubMed ID: 38827816 [TBL] [Abstract][Full Text] [Related]
36. From CO2 to cell: energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data. Mangiapia M; Scott K FEMS Microbiol Lett; 2016 Apr; 363(7):. PubMed ID: 26940292 [TBL] [Abstract][Full Text] [Related]
37. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. Olins HC; Rogers DR; Frank KL; Vidoudez C; Girguis PR Geobiology; 2013 May; 11(3):279-93. PubMed ID: 23551687 [TBL] [Abstract][Full Text] [Related]
38. Protecting the geyser basins of Yellowstone National Park: toward a new national policy for a vulnerable environmental resource. Barrick KA Environ Manage; 2010 Jan; 45(1):192-202. PubMed ID: 19841971 [TBL] [Abstract][Full Text] [Related]