These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26995711)

  • 1. Cycle time influences the development of muscle fatigue at low to moderate levels of intermittent muscle contraction.
    Rashedi E; Nussbaum MA
    J Electromyogr Kinesiol; 2016 Jun; 28():37-45. PubMed ID: 26995711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the history dependency of muscle recovery from a fatiguing intermittent task.
    Rashedi E; Nussbaum MA
    J Biomech; 2017 Jan; 51():26-31. PubMed ID: 27939350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle fatigue during intermittent isokinetic shoulder abduction: age effects and utility of electromyographic measures.
    Yassierli ; Nussbaum MA
    Ergonomics; 2007 Jul; 50(7):1110-26. PubMed ID: 17510825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue response of rat medial longissimus muscles induced with electrical stimulation at various work/rest ratios.
    Wawrow PT; Jakobi JM; Cavanaugh JM
    J Electromyogr Kinesiol; 2011 Dec; 21(6):939-46. PubMed ID: 21925902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle fatigue and endurance during repetitive intermittent static efforts: development of prediction models.
    Iridiastadi H; Nussbaum MA
    Ergonomics; 2006 Mar; 49(4):344-60. PubMed ID: 16690564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical variation in low-load work - physiological effects during exposure & recovery.
    Yung M; Wells R
    Work; 2012; 41 Suppl 1():5731-3. PubMed ID: 22317667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular fatigue and endurance during intermittent static efforts: effects of contraction level, duty cycle, and cycle time.
    Iridiastadi H; Nussbaum MA
    Hum Factors; 2006; 48(4):710-20. PubMed ID: 17240719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode.
    Madeleine P; Jørgensen LV; Søgaard K; Arendt-Nielsen L; Sjøgaard G
    Eur J Appl Physiol; 2002 May; 87(1):28-37. PubMed ID: 12012073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Localized Muscle Fatigue Responses at Current Upper-Extremity Ergonomics Threshold Limit Values.
    Abdel-Malek DM; Foley RCA; Wakeely F; Graham JD; La Delfa NJ
    Hum Factors; 2022 Mar; 64(2):385-400. PubMed ID: 32757794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration-induced muscle fatigue, a possible contribution to musculoskeletal injury.
    Adamo DE; Martin BJ; Johnson PW
    Eur J Appl Physiol; 2002 Nov; 88(1-2):134-40. PubMed ID: 12436281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle fatigue estimation with twitch force derived from sEMG peaks.
    Na Y; Lee HD; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3492-5. PubMed ID: 26737045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On functional motor adaptations: from the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck-shoulder region.
    Madeleine P
    Acta Physiol (Oxf); 2010 Jun; 199 Suppl 679():1-46. PubMed ID: 20579000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gender influence on fatigability of back muscles during intermittent isometric contractions: a study of neuromuscular activation patterns.
    Larivière C; Gravel D; Gagnon D; Gardiner P; Bertrand Arsenault A; Gaudreault N
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):893-904. PubMed ID: 16806614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of motor unit discharge rate and H-reflex amplitude during submaximal fatigue of the human soleus muscle.
    Kuchinad RA; Ivanova TD; Garland SJ
    Exp Brain Res; 2004 Oct; 158(3):345-55. PubMed ID: 15146306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception of effort changes following an isometric fatiguing exercise of elbow flexors.
    Lampropoulou SI; Nowicky AV
    Motor Control; 2014 Apr; 18(2):146-64. PubMed ID: 24163095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-course of performance changes and underlying mechanisms during and after repetitive moderately weight-loaded knee extensions.
    Plautard M; Guilhem G; Cornu C; Guével A
    J Electromyogr Kinesiol; 2015 Jun; 25(3):488-94. PubMed ID: 25749074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity.
    Hannah R; Stannard RL; Minshull C; Artioli GG; Harris RC; Sale C
    J Appl Physiol (1985); 2015 Mar; 118(5):604-12. PubMed ID: 25539942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal work-rest cycles for an isometric intermittent gripping task as a function of force, posture and grip span.
    Eksioglu M
    Ergonomics; 2006 Feb; 49(2):180-201. PubMed ID: 16484144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women.
    Yoon T; Schlinder Delap B; Griffith EE; Hunter SK
    Muscle Nerve; 2007 Oct; 36(4):515-24. PubMed ID: 17626289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.