These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26995917)
21. Effects of RAMEB and/or mechanical mixing on the bioavailability and biodegradation of PCBs in soil/slurry. Hu J; Wang Y; Su X; Yu C; Qin Z; Wang H; Hashmi MZ; Shi J; Shen C Chemosphere; 2016 Jul; 155():479-487. PubMed ID: 27145422 [TBL] [Abstract][Full Text] [Related]
22. Use of a glass bead-containing liquid medium for efficient production of a soil-free culture with polychlorinated biphenyl-dechlorination activity. Suzuki D; Baba D; Satheeja Santhi V; Jebakumar Solomon RD; Katayama A World J Microbiol Biotechnol; 2013 Aug; 29(8):1461-71. PubMed ID: 23504188 [TBL] [Abstract][Full Text] [Related]
23. Effects of randomly methylated-beta-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil. Fava F; Ciccotosto VF Appl Microbiol Biotechnol; 2002 Mar; 58(3):393-9. PubMed ID: 11935193 [TBL] [Abstract][Full Text] [Related]
24. Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Fava F; Piccolo A Biotechnol Bioeng; 2002 Jan; 77(2):204-11. PubMed ID: 11753927 [TBL] [Abstract][Full Text] [Related]
25. Altered biologic activities of commercial polychlorinated biphenyl mixtures after microbial reductive dechlorination. Mousa MA; Ganey PE; Quensen JF; Madhukar BV; Chou K; Giesy JP; Fischer LJ; Boyd SA Environ Health Perspect; 1998 Dec; 106 Suppl 6(Suppl 6):1409-18. PubMed ID: 9860899 [TBL] [Abstract][Full Text] [Related]
26. Effective degradation of polychlorinated biphenyls by a facultative anaerobic bacterial consortium using alternating anaerobic aerobic treatments. Pathiraja G; Egodawatta P; Goonetilleke A; Te'o VSJ Sci Total Environ; 2019 Apr; 659():507-514. PubMed ID: 31096380 [TBL] [Abstract][Full Text] [Related]
27. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Tilston EL; Collins CD; Mitchell GR; Princivalle J; Shaw LJ Environ Pollut; 2013 Feb; 173():38-46. PubMed ID: 23202280 [TBL] [Abstract][Full Text] [Related]
28. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development. Qin H; Brookes PC; Xu J Environ Pollut; 2014 Jan; 184():306-12. PubMed ID: 24077568 [TBL] [Abstract][Full Text] [Related]
29. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil. Song M; Luo C; Li F; Jiang L; Wang Y; Zhang D; Zhang G Sci Total Environ; 2015 Jan; 502():426-33. PubMed ID: 25268572 [TBL] [Abstract][Full Text] [Related]
30. Microbial dehalogenation of polychlorinated biphenyls in aerobic conditions. Aráoz B; Viale AA Rev Argent Microbiol; 2004; 36(1):47-51. PubMed ID: 15174750 [TBL] [Abstract][Full Text] [Related]
31. Characterization of the microbial community from the marine sediment of the Venice lagoon capable of reductive dechlorination of coplanar polychlorinated biphenyls (PCBs). Zanaroli G; Balloi A; Negroni A; Daffonchio D; Young LY; Fava F J Hazard Mater; 2010 Jun; 178(1-3):417-26. PubMed ID: 20153926 [TBL] [Abstract][Full Text] [Related]
32. Microbial transformation and degradation of polychlorinated biphenyls. Field JA; Sierra-Alvarez R Environ Pollut; 2008 Sep; 155(1):1-12. PubMed ID: 18035460 [TBL] [Abstract][Full Text] [Related]
34. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Sierra I; Valera JL; Marina ML; Laborda F Chemosphere; 2003 Nov; 53(6):609-18. PubMed ID: 12962710 [TBL] [Abstract][Full Text] [Related]
35. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Meggo RE; Schnoor JL; Hu D Environ Pollut; 2013 Jul; 178():312-21. PubMed ID: 23603468 [TBL] [Abstract][Full Text] [Related]
36. Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate aroclor 1260. Bedard DL; Bailey JJ; Reiss BL; Jerzak GV Appl Environ Microbiol; 2006 Apr; 72(4):2460-70. PubMed ID: 16597944 [TBL] [Abstract][Full Text] [Related]
37. Microbial dechlorination of polychlorinated biphenyls, dibenzo-p-dioxins, and -furans at the Portland Harbor Superfund site, Oregon, USA. Rodenburg LA; Krumins V; Curran JC Environ Sci Technol; 2015 Jun; 49(12):7227-35. PubMed ID: 26010118 [TBL] [Abstract][Full Text] [Related]
38. Effects of sulfate concentration on the anaerobic dechlorination of polychlorinated biphenyls in estuarine sediments. Cho YC; Oh KH J Microbiol; 2005 Apr; 43(2):166-71. PubMed ID: 15880092 [TBL] [Abstract][Full Text] [Related]
39. [Isolation, identification and degradation characterization of a polychlorinated biphenyls-degrading bacterium Pseudomonas sp. DN2]. Ren HJ; Gao S; Zhang YL; Liu N; Zhang LY; Zhou R; Deng YZ Huan Jing Ke Xue; 2009 Mar; 30(3):858-63. PubMed ID: 19432341 [TBL] [Abstract][Full Text] [Related]
40. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment. Liu CY; Jiang X; Yang XL; Song Y Sci Total Environ; 2010 Jan; 408(4):958-64. PubMed ID: 19889446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]