These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26996137)

  • 1. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers.
    Song KH; Lee J; Park H; Kim HM; Park J; Kwon KW; Doh J
    Sci Rep; 2016 Mar; 6():23412. PubMed ID: 26996137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial Cell Focal Adhesion Regulates Transendothelial Migration and Subendothelial Crawling of T Cells.
    Lee J; Song KH; Kim T; Doh J
    Front Immunol; 2018; 9():48. PubMed ID: 29472915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T cells sense biophysical cues using lamellipodia and filopodia to optimize intraluminal path finding.
    Song KH; Kwon KW; Choi JC; Jung J; Park Y; Suh KY; Doh J
    Integr Biol (Camb); 2014 Apr; 6(4):450-9. PubMed ID: 24599186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observations of the kinetics of migrating T cells suggest active retention by endothelial cells with continual bidirectional migration.
    McGettrick HM; Hunter K; Moss PA; Buckley CD; Rainger GE; Nash GB
    J Leukoc Biol; 2009 Jan; 85(1):98-107. PubMed ID: 18948550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamins A and C but not lamin B1 regulate nuclear mechanics.
    Lammerding J; Fong LG; Ji JY; Reue K; Stewart CL; Young SG; Lee RT
    J Biol Chem; 2006 Sep; 281(35):25768-80. PubMed ID: 16825190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes.
    Buxboim A; Irianto J; Swift J; Athirasala A; Shin JW; Rehfeldt F; Discher DE
    Mol Biol Cell; 2017 Nov; 28(23):3333-3348. PubMed ID: 28931598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes.
    Oppenheimer-Marks N; Davis LS; Bogue DT; Ramberg J; Lipsky PE
    J Immunol; 1991 Nov; 147(9):2913-21. PubMed ID: 1717579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1.
    Wong D; Prameya R; Dorovini-Zis K
    J Neuropathol Exp Neurol; 1999 Feb; 58(2):138-52. PubMed ID: 10029097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct nuclear assembly pathways for lamins A and C lead to their increase during quiescence in Swiss 3T3 cells.
    Pugh GE; Coates PJ; Lane EB; Raymond Y; Quinlan RA
    J Cell Sci; 1997 Oct; 110 ( Pt 19)():2483-93. PubMed ID: 9410886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filaments made from A- and B-type lamins differ in structure and organization.
    Goldberg MW; Huttenlauch I; Hutchison CJ; Stick R
    J Cell Sci; 2008 Jan; 121(Pt 2):215-25. PubMed ID: 18187453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies.
    Broers JL; Peeters EA; Kuijpers HJ; Endert J; Bouten CV; Oomens CW; Baaijens FP; Ramaekers FC
    Hum Mol Genet; 2004 Nov; 13(21):2567-80. PubMed ID: 15367494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells.
    Houben F; Willems CH; Declercq IL; Hochstenbach K; Kamps MA; Snoeckx LH; Ramaekers FC; Broers JL
    Biochim Biophys Acta; 2009 Feb; 1793(2):312-24. PubMed ID: 19013199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival.
    Harada T; Swift J; Irianto J; Shin JW; Spinler KR; Athirasala A; Diegmiller R; Dingal PC; Ivanovska IL; Discher DE
    J Cell Biol; 2014 Mar; 204(5):669-82. PubMed ID: 24567359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysfunction of iPSC-derived endothelial cells in human Hutchinson-Gilford progeria syndrome.
    Matrone G; Thandavarayan RA; Walther BK; Meng S; Mojiri A; Cooke JP
    Cell Cycle; 2019 Oct; 18(19):2495-2508. PubMed ID: 31411525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RhoJ integrates attractive and repulsive cues in directional migration of endothelial cells.
    Fukushima Y; Nishiyama K; Kataoka H; Fruttiger M; Fukuhara S; Nishida K; Mochizuki N; Kurihara H; Nishikawa SI; Uemura A
    EMBO J; 2020 Jun; 39(12):e102930. PubMed ID: 32347571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking of Endothelial Cell Migration and Stiffness Measurements Reveal the Role of Cytoskeletal Dynamics.
    Romano DJ; Gomez-Salinero JM; Šunić Z; Checco A; Rabbany SY
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of T cells on endothelial layers aligned by nanostructured surfaces.
    Song KH; Kwon KW; Song S; Suh KY; Doh J
    Biomaterials; 2012 Mar; 33(7):2007-15. PubMed ID: 22189145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the roles of nuclear A- and B-type lamins in brain development.
    Young SG; Jung HJ; Coffinier C; Fong LG
    J Biol Chem; 2012 May; 287(20):16103-10. PubMed ID: 22416132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear lamin isoforms differentially contribute to LINC complex-dependent nucleocytoskeletal coupling and whole-cell mechanics.
    Vahabikashi A; Sivagurunathan S; Nicdao FAS; Han YL; Park CY; Kittisopikul M; Wong X; Tran JR; Gundersen GG; Reddy KL; Luxton GWG; Guo M; Fredberg JJ; Zheng Y; Adam SA; Goldman RD
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2121816119. PubMed ID: 35439057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstituted HDL-apoE3 promotes endothelial cell migration through ID1 and its downstream kinases ERK1/2, AKT and p38 MAPK.
    Valanti EK; Dalakoura-Karagkouni K; Fotakis P; Vafiadaki E; Mantzoros CS; Chroni A; Zannis V; Kardassis D; Sanoudou D
    Metabolism; 2022 Feb; 127():154954. PubMed ID: 34875308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.