These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26996154)

  • 1. On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction.
    Back S; Kim JH; Kim YT; Jung Y
    Phys Chem Chem Phys; 2016 Apr; 18(14):9652-7. PubMed ID: 26996154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic understanding of electrocatalytic reduction of CO
    Sahu A; Mondal K; Ghosh P
    J Mol Model; 2018 Aug; 24(9):248. PubMed ID: 30132139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-Sn Oxides for Highly Selective CO
    Tian J; Wang R; Shen M; Ma X; Yao H; Hua Z; Zhang L
    ChemSusChem; 2021 May; 14(10):2247-2254. PubMed ID: 33783971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.
    Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F
    ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydronium-Induced Switching between CO
    Seifitokaldani A; Gabardo CM; Burdyny T; Dinh CT; Edwards JP; Kibria MG; Bushuyev OS; Kelley SO; Sinton D; Sargent EH
    J Am Chem Soc; 2018 Mar; 140(11):3833-3837. PubMed ID: 29504748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical CO
    Bagger A; Ju W; Varela AS; Strasser P; Rossmeisl J
    Chemphyschem; 2017 Nov; 18(22):3266-3273. PubMed ID: 28872756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Hydrogen Evolution during Photoreduction of CO
    Todorova TK; Huan TN; Wang X; Agarwala H; Fontecave M
    Inorg Chem; 2019 May; 58(10):6893-6903. PubMed ID: 31050296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting Production of HCOOH from CO
    Duan YX; Zhou YT; Yu Z; Liu DX; Wen Z; Yan JM; Jiang Q
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8798-8802. PubMed ID: 33512043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au/Pb Interface Allows the Methane Formation Pathway in Carbon Dioxide Electroreduction.
    Ismail AM; Samu GF; Nguyën HC; Csapó E; López N; Janáky C
    ACS Catal; 2020 May; 10(10):5681-5690. PubMed ID: 32455054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydride Pinning Pathway in the Hydrogenation of CO
    Sarma PJ; Baruah SD; Logsdail A; Deka RC
    Chemphyschem; 2019 Mar; 20(5):680-686. PubMed ID: 30648792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice-Hydride Mechanism in Electrocatalytic CO
    Tang Q; Lee Y; Li DY; Choi W; Liu CW; Lee D; Jiang DE
    J Am Chem Soc; 2017 Jul; 139(28):9728-9736. PubMed ID: 28640611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of H2 on the gas-phase decomposition of formic acid: a theoretical study.
    Hu SW; Wang XY; Chu TW; Liu XQ
    J Phys Chem A; 2005 Oct; 109(40):9129-40. PubMed ID: 16332022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic metal hydride generation using CPET mediators.
    Dey S; Masero F; Brack E; Fontecave M; Mougel V
    Nature; 2022 Jul; 607(7919):499-506. PubMed ID: 35859199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen Vacancies in Amorphous InO
    Zhang J; Yin R; Shao Q; Zhu T; Huang X
    Angew Chem Int Ed Engl; 2019 Apr; 58(17):5609-5613. PubMed ID: 30815992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exclusive Formation of Formic Acid from CO
    Bai X; Chen W; Zhao C; Li S; Song Y; Ge R; Wei W; Sun Y
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12219-12223. PubMed ID: 28741847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective electrocatalytic reduction of CO
    Wang D; Dong S; Wen L; Yu W; He Z; Guo Q; Lu X; Wang L; Song S; Ma J
    Chemosphere; 2022 Mar; 291(Pt 3):132889. PubMed ID: 34780747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity.
    Wuttig A; Yaguchi M; Motobayashi K; Osawa M; Surendranath Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):E4585-93. PubMed ID: 27450088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi@Sn Core-Shell Structure with Compressive Strain Boosts the Electroreduction of CO
    Xing Y; Kong X; Guo X; Liu Y; Li Q; Zhang Y; Sheng Y; Yang X; Geng Z; Zeng J
    Adv Sci (Weinh); 2020 Nov; 7(22):1902989. PubMed ID: 33240749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium-Pyrogallol Scaffolds in Electrochemical CO
    Chen EX; Yang J; Qiu M; Wang X; Zhang YF; Guo YJ; Huang SL; Sun YY; Zhang J; Hou Y; Lin Q
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52588-52594. PubMed ID: 33185432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.
    Qiao J; Liu Y; Hong F; Zhang J
    Chem Soc Rev; 2014 Jan; 43(2):631-75. PubMed ID: 24186433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.