These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Reaction mechanism of the selective reduction of CO Garza AJ; Pakhira S; Bell AT; Mendoza-Cortes JL; Head-Gordon M Phys Chem Chem Phys; 2018 Sep; 20(37):24058-24064. PubMed ID: 30204173 [TBL] [Abstract][Full Text] [Related]
43. Photocatalytic Reduction of CO Peng LY; Pan GN; Chen WK; Liu XY; Fang WH; Cui G Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202315300. PubMed ID: 38085965 [TBL] [Abstract][Full Text] [Related]
44. The energetics of electron and proton transfer to CO Yang XH; Cuesta A; Cheng J Phys Chem Chem Phys; 2021 Oct; 23(38):22035-22044. PubMed ID: 34570137 [TBL] [Abstract][Full Text] [Related]
45. Structure-Tunable Copper-Indium Catalysts for Highly Selective CO Zhu M; Tian P; Li J; Chen J; Xu J; Han YF ChemSusChem; 2019 Sep; 12(17):3955-3959. PubMed ID: 31332954 [TBL] [Abstract][Full Text] [Related]
46. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity. Wen M; Huang F; Lu G; Wang ZX Inorg Chem; 2013 Oct; 52(20):12098-107. PubMed ID: 24087841 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical Upgrading of Formic Acid to Formamide via Coupling Nitrite Co-Reduction. Guo C; Zhou W; Lan X; Wang Y; Li T; Han S; Yu Y; Zhang B J Am Chem Soc; 2022 Sep; 144(35):16006-16011. PubMed ID: 35905476 [TBL] [Abstract][Full Text] [Related]
48. Elucidation of the selectivity of proton-dependent electrocatalytic CO2 reduction by fac-Re(bpy)(CO)3Cl. Keith JA; Grice KA; Kubiak CP; Carter EA J Am Chem Soc; 2013 Oct; 135(42):15823-9. PubMed ID: 24053131 [TBL] [Abstract][Full Text] [Related]
49. An Artificial Electrode/Electrolyte Interface for CO Zhong Y; Xu Y; Ma J; Wang C; Sheng S; Cheng C; Li M; Han L; Zhou L; Cai Z; Kuang Y; Liang Z; Sun X Angew Chem Int Ed Engl; 2020 Oct; 59(43):19095-19101. PubMed ID: 32686265 [TBL] [Abstract][Full Text] [Related]
50. Lateral Adsorbate Interactions Inhibit HCOO Bohra D; Ledezma-Yanez I; Li G; de Jong W; Pidko EA; Smith WA Angew Chem Int Ed Engl; 2019 Jan; 58(5):1345-1349. PubMed ID: 30444950 [TBL] [Abstract][Full Text] [Related]
51. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. Reske R; Mistry H; Behafarid F; Roldan Cuenya B; Strasser P J Am Chem Soc; 2014 May; 136(19):6978-86. PubMed ID: 24746172 [TBL] [Abstract][Full Text] [Related]
52. Influence of Cations on HCOOH and CO Formation during CO Ye C; Dattila F; Chen X; López N; Koper MTM J Am Chem Soc; 2023 Sep; 145(36):19601-19610. PubMed ID: 37651736 [TBL] [Abstract][Full Text] [Related]
53. The Effect of Organic Additives on the Activity and Selectivity of CO Xu W; Qiu Y; Zhang T; Li X; Zhang H ChemSusChem; 2018 Sep; 11(17):2904-2911. PubMed ID: 30015408 [TBL] [Abstract][Full Text] [Related]
54. Ensemble effects in Cu/Au ultrasmall nanoparticles control the branching point for C1 selectivity during CO Shang H; Kim D; Wallentine SK; Kim M; Hofmann DM; Dasgupta R; Murphy CJ; Asthagiri A; Baker LR Chem Sci; 2021 Jul; 12(26):9146-9152. PubMed ID: 34276944 [TBL] [Abstract][Full Text] [Related]
55. Electro-oxidation of formic acid catalyzed by FePt nanoparticles. Chen W; Kim J; Sun S; Chen S Phys Chem Chem Phys; 2006 Jun; 8(23):2779-86. PubMed ID: 16763712 [TBL] [Abstract][Full Text] [Related]
56. Theoretical insights into the effect of the overpotential on CO electroreduction mechanisms on Cu(111): regulation and application of electrode potentials from a CO coverage-dependent electrochemical model. Ou L; Chen J Phys Chem Chem Phys; 2019 Dec; 22(1):62-73. PubMed ID: 31793953 [TBL] [Abstract][Full Text] [Related]
57. Reactivity of CO2 Activated on Transition Metals and Sulfur Ligands. Kobayashi K; Tanaka K Inorg Chem; 2015 Jun; 54(11):5085-95. PubMed ID: 25978130 [TBL] [Abstract][Full Text] [Related]
58. Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center. Chen L; Guo Z; Wei XG; Gallenkamp C; Bonin J; Anxolabéhère-Mallart E; Lau KC; Lau TC; Robert M J Am Chem Soc; 2015 Sep; 137(34):10918-21. PubMed ID: 26267016 [TBL] [Abstract][Full Text] [Related]
59. Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals. Akhade SA; Luo W; Nie X; Bernstein NJ; Asthagiri A; Janik MJ Phys Chem Chem Phys; 2014 Oct; 16(38):20429-35. PubMed ID: 25165989 [TBL] [Abstract][Full Text] [Related]
60. Enhanced Selectivity to H2 Formation in Decomposition of HCOOH on the Ag19@Pd60 Core-Shell Nanocluster from First-Principles. Cho J; Lee S; Han J; Yoon SP; Nam SW; Choi SH; Hong SA; Lee KY; Ham HC J Nanosci Nanotechnol; 2015 Oct; 15(10):8233-7. PubMed ID: 26726494 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]