BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

672 related articles for article (PubMed ID: 26996188)

  • 1. Differentiation of murine models of "negative ERG" by single and repetitive light stimuli.
    Tanimoto N; Akula JD; Fulton AB; Weber BH; Seeliger MW
    Doc Ophthalmol; 2016 Apr; 132(2):101-9. PubMed ID: 26996188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting the ON and OFF contributions to the full-field photopic flash electroretinogram using summed growth curves.
    Akula JD; Ambrosio L; Howard FI; Hansen RM; Fulton AB
    Exp Eye Res; 2019 Dec; 189():107827. PubMed ID: 31600486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroretinographic findings in a patient with congenital stationary night blindness due to a novel NYX mutation.
    McAnany JJ; Alexander KR; Kumar NM; Ying H; Anastasakis A; Fishman GA
    Ophthalmic Genet; 2013 Sep; 34(3):167-73. PubMed ID: 23289809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli.
    Mowat FM; Wise E; Oh A; Foster ML; Kremers J
    Exp Eye Res; 2019 Aug; 185():107673. PubMed ID: 31128103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ISCEV extended protocol for the stimulus-response series for light-adapted full-field ERG.
    McCulloch DL; Kondo M; Hamilton R; Lachapelle P; Messias AMV; Robson AG; Ueno S
    Doc Ophthalmol; 2019 Jun; 138(3):205-215. PubMed ID: 30929108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic characterization of complete CSNB in the inbred research beagle: how common is CSNB in research and companion dogs?
    Oh A; Loew ER; Foster ML; Davidson MG; English RV; Gervais KJ; Herring IP; Mowat FM
    Doc Ophthalmol; 2018 Oct; 137(2):87-101. PubMed ID: 30051304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-field electroretinogram in autism spectrum disorder.
    Constable PA; Gaigg SB; Bowler DM; Jägle H; Thompson DA
    Doc Ophthalmol; 2016 Apr; 132(2):83-99. PubMed ID: 26868825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronegative Electroretinograms in the United Arab Emirates.
    Alsalamah AK; Khan AO
    Middle East Afr J Ophthalmol; 2020; 27(2):86-90. PubMed ID: 32874040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics.
    Dinet V; Ciccotosto GD; Delaunay K; Borras C; Ranchon-Cole I; Kostic C; Savoldelli M; El Sanharawi M; Jonet L; Pirou C; An N; Abitbol M; Arsenijevic Y; Behar-Cohen F; Cappai R; Mascarelli F
    Mol Brain; 2016 Jun; 9(1):64. PubMed ID: 27267879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RS-1 Gene Delivery to an Adult Rs1h Knockout Mouse Model Restores ERG b-Wave with Reversal of the Electronegative Waveform of X-Linked Retinoschisis.
    Zeng Y; Takada Y; Kjellstrom S; Hiriyanna K; Tanikawa A; Wawrousek E; Smaoui N; Caruso R; Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):3279-85. PubMed ID: 15326152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy.
    Hayashi T; Hosono K; Kurata K; Katagiri S; Mizobuchi K; Ueno S; Kondo M; Nakano T; Hotta Y
    Doc Ophthalmol; 2020 Apr; 140(2):147-157. PubMed ID: 31583501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association.
    Marmor MF; Zeitz C
    Doc Ophthalmol; 2018 Aug; 137(1):57-62. PubMed ID: 30051303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postreceptoral contributions to the light-adapted ERG of mice lacking b-waves.
    Shirato S; Maeda H; Miura G; Frishman LJ
    Exp Eye Res; 2008 Jun; 86(6):914-28. PubMed ID: 18440505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Depth Functional Diagnostics of Mouse Models by Single-Flash and Flicker Electroretinograms without Adapting Background Illumination.
    Tanimoto N; Michalakis S; Weber BH; Wahl-Schott CA; Hammes HP; Seeliger MW
    Adv Exp Med Biol; 2016; 854():619-25. PubMed ID: 26427467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of ERG abnormalities in XLRS and XLCSNB.
    Bradshaw K; Allen L; Trump D; Hardcastle A; George N; Moore A
    Doc Ophthalmol; 2004 Mar; 108(2):135-45. PubMed ID: 15455796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreceptor and postreceptor responses in congenital stationary night blindness.
    Raghuram A; Hansen RM; Moskowitz A; Fulton AB
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4648-58. PubMed ID: 23761088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal 8-Hz flicker electroretinograms in carriers of X-linked retinoschisis.
    McAnany JJ; Park JC; Collison FT; Fishman GA; Stone EM
    Doc Ophthalmol; 2016 Aug; 133(1):61-70. PubMed ID: 27369766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete congenital stationary night blindness associated with a novel
    Hayashi T; Murakami Y; Mizobuchi K; Koyanagi Y; Sonoda KH; Nakano T
    Ophthalmic Genet; 2021 Aug; 42(4):412-419. PubMed ID: 33769208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distinctive form of congenital stationary night blindness with cone ON-pathway dysfunction.
    Barnes CS; Alexander KR; Fishman GA
    Ophthalmology; 2002 Mar; 109(3):575-83. PubMed ID: 11874764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phenotype-genotype correlation study of X-linked retinoschisis.
    Vincent A; Robson AG; Neveu MM; Wright GA; Moore AT; Webster AR; Holder GE
    Ophthalmology; 2013 Jul; 120(7):1454-64. PubMed ID: 23453514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.