These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26996242)

  • 1. Proteomic approaches to the study of renal mitochondria.
    Tuma Z; Kuncova J; Mares J; Grundmanova M; Matejovic M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2016 Jun; 160(2):173-82. PubMed ID: 26996242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics.
    Tuma Z; Kuncova J; Mares J; Matejovic M
    Clin Exp Nephrol; 2016 Feb; 20(1):39-49. PubMed ID: 26072732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Down-regulation of alpha-2u globulin in renal mitochondria of STZ-induced diabetic rats observed by a proteomic method.
    Sun SH; Liu SQ; Cai CP; Cai R; Chen L; Zhang QB
    Ann Endocrinol (Paris); 2012 Dec; 73(6):530-41. PubMed ID: 23131471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics and diabetic nephropathy.
    Merchant ML; Klein JB
    Semin Nephrol; 2007 Nov; 27(6):627-36. PubMed ID: 18061845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics of human mitochondria.
    Palmfeldt J; Bross P
    Mitochondrion; 2017 Mar; 33():2-14. PubMed ID: 27444749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Emerging Role of Mitochondrial Targeting in Kidney Disease.
    Eirin A; Lerman A; Lerman LO
    Handb Exp Pharmacol; 2017; 240():229-250. PubMed ID: 27316914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics of yeast mitochondria.
    Reinders J; Sickmann A
    Methods Mol Biol; 2007; 372():543-57. PubMed ID: 18314750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis.
    McDonald T; Sheng S; Stanley B; Chen D; Ko Y; Cole RN; Pedersen P; Van Eyk JE
    Mol Cell Proteomics; 2006 Dec; 5(12):2392-411. PubMed ID: 17000643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria proteome profiling: a comparative analysis between gel- and gel-free approaches.
    Ferreira R; Rocha H; Almeida V; Padrão AI; Santa C; Vilarinho L; Amado F; Vitorino R
    Talanta; 2013 Oct; 115():277-83. PubMed ID: 24054592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative analysis of the mitochondrial proteome in yeast.
    Prokisch H; Scharfe C; Camp DG; Xiao W; David L; Andreoli C; Monroe ME; Moore RJ; Gritsenko MA; Kozany C; Hixson KK; Mottaz HM; Zischka H; Ueffing M; Herman ZS; Davis RW; Meitinger T; Oefner PJ; Smith RD; Steinmetz LM
    PLoS Biol; 2004 Jun; 2(6):e160. PubMed ID: 15208715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant mitochondrial proteomics.
    Taylor NL; Millar AH
    Methods Mol Biol; 2015; 1305():83-106. PubMed ID: 25910728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative mitochondrial proteomics: perspective in human diseases.
    Jiang Y; Wang X
    J Hematol Oncol; 2012 Mar; 5():11. PubMed ID: 22424240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic survey towards the tissue-specific proteins of mouse mitochondria.
    Wang Y; Sun H; Ru Y; Yin S; Yin L; Liu S
    Sci China Life Sci; 2011 Jan; 54(1):3-15. PubMed ID: 21253865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of mitochondria: biological and clinical progresses in cancer.
    Wang Y; Zhang J; Li B; He QY
    Expert Rev Proteomics; 2017 Oct; 14(10):891-903. PubMed ID: 28862052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases.
    Chen X; Li J; Hou J; Xie Z; Yang F
    Expert Rev Proteomics; 2010 Jun; 7(3):333-45. PubMed ID: 20536306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Large Amounts of Highly Pure Mitochondria for "Omics" Studies.
    Afanasyeva MA; Ustiugova AS; Golyshev SA; Kopylov AT; Bogolyubova AV; Demin DE; Belousov PV; Schwartz AM
    Biochemistry (Mosc); 2018 Jan; 83(1):76-85. PubMed ID: 29534672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased Tissue COX5B Expression and Mitochondrial Dysfunction during Sepsis-Induced Kidney Injury in Rats.
    Hinkelbein J; Böhm L; Braunecker S; Adler C; De Robertis E; Cirillo F
    Oxid Med Cell Longev; 2017; 2017():8498510. PubMed ID: 28246552
    [No Abstract]   [Full Text] [Related]  

  • 18. Building the mitochondrial proteome.
    Da Cruz S; Parone PA; Martinou JC
    Expert Rev Proteomics; 2005 Aug; 2(4):541-51. PubMed ID: 16097887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling age-dependent variation of the mitochondrial proteome.
    Dencher NA; Goto S; Reifschneider NH; Sugawa M; Krause F
    Ann N Y Acad Sci; 2006 May; 1067():116-9. PubMed ID: 16803976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of molecular heterogeneity in kidney tissue by targeted proteomics.
    Hoyer KJR; Dittrich S; Bartram MP; Rinschen MM
    J Proteomics; 2019 Feb; 193():85-92. PubMed ID: 29522878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.