BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 26996260)

  • 1. Breathable waveguides for combined light and CO2 delivery to microalgae.
    Pierobon SC; Riordon J; Nguyen B; Sinton D
    Bioresour Technol; 2016 Jun; 209():391-6. PubMed ID: 26996260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal intensity and biomass density for biofuel production in a thin-light-path photobioreactor.
    Jain A; Voulis N; Jung EE; Doud DF; Miller WB; Angenent LT; Erickson D
    Environ Sci Technol; 2015 May; 49(10):6327-34. PubMed ID: 25910004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slab waveguide photobioreactors for microalgae based biofuel production.
    Jung EE; Kalontarov M; Doud DF; Ooms MD; Angenent LT; Sinton D; Erickson D
    Lab Chip; 2012 Oct; 12(19):3740-5. PubMed ID: 22824859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth.
    Sun Y; Liao Q; Huang Y; Xia A; Fu Q; Zhu X; Zheng Y
    Bioresour Technol; 2016 Nov; 220():215-224. PubMed ID: 27573475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspectives on microalgal CO₂-emission mitigation systems--a review.
    Ho SH; Chen CY; Lee DJ; Chang JS
    Biotechnol Adv; 2011; 29(2):189-98. PubMed ID: 21094248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified conventional bioreactor for microalgae cultivation.
    Verma R; Kumar R; Mehan L; Srivastava A
    J Biosci Bioeng; 2018 Feb; 125(2):224-230. PubMed ID: 28988616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing carbon dioxide utilization for microalgae biofilm cultivation.
    Blanken W; Schaap S; Theobald S; Rinzema A; Wijffels RH; Janssen M
    Biotechnol Bioeng; 2017 Apr; 114(4):769-776. PubMed ID: 27748511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal.
    Kim HW; Cheng J; Rittmann BE
    Bioresour Technol; 2016 Mar; 204():32-37. PubMed ID: 26771923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing a CO
    Naira VR; Das D; Maiti SK
    Bioresour Technol; 2018 Feb; 250():936-941. PubMed ID: 29217125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real time light intensity based carbon dioxide feeding for high cell-density microalgae cultivation and biodiesel production in a bubble column photobioreactor under outdoor natural sunlight.
    Naira VR; Das D; Maiti SK
    Bioresour Technol; 2019 Jul; 284():43-55. PubMed ID: 30925422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel horizontal photobioreactor for high-density cultivation of microalgae.
    Dogaris I; Welch M; Meiser A; Walmsley L; Philippidis G
    Bioresour Technol; 2015 Dec; 198():316-24. PubMed ID: 26407345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stacked optical waveguide photobioreactor for high density algal cultures.
    Jung EE; Jain A; Voulis N; Doud DF; Angenent LT; Erickson D
    Bioresour Technol; 2014 Nov; 171():495-9. PubMed ID: 25219787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new technology of CO2 supplementary for microalgae cultivation on large scale - A spraying absorption tower coupled with an outdoor open runway pond.
    Zhang CD; Li W; Shi YH; Li YG; Huang JK; Li HX
    Bioresour Technol; 2016 Jun; 209():351-9. PubMed ID: 26998713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor.
    Choi SY; Sim SJ; Ko SC; Son J; Lee JS; Lee HJ; Chang WS; Woo HM
    J Agric Food Chem; 2020 Sep; 68(37):10050-10055. PubMed ID: 32851842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae community shifts during the biogas upgrading in an alkaline open photobioreactor.
    Granada-Moreno CI; Aburto-Medina A; de Los Cobos Vasconcelos D; González-Sánchez A
    J Appl Microbiol; 2017 Oct; 123(4):903-915. PubMed ID: 28772337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haloalkaline Bioconversions for Methane Production from Microalgae Grown on Sunlight.
    Daelman MRJ; Sorokin D; Kruse O; van Loosdrecht MCM; Strous M
    Trends Biotechnol; 2016 Jun; 34(6):450-457. PubMed ID: 26968613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae Cultivation and Biomass Quantification in a Bench-Scale Photobioreactor with Corrosive Flue Gases.
    Molitor HR; Williard DE; Schnoor JL
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.