These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2699649)

  • 1. [The effect of initial bioenergetic state on the cryostability of yeast cells].
    Tsutsaeva AA; Kudokotseva OV
    Mikrobiologiia; 1989; 58(5):785-90. PubMed ID: 2699649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors involved in anaerobic growth of Saccharomyces cerevisiae.
    Ishtar Snoek IS; Yde Steensma H
    Yeast; 2007 Jan; 24(1):1-10. PubMed ID: 17192845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative characteristics of the activity of the protein synthesizing systems of wild-type cells and the cytoplasmic petite-mutant of the yeast Saccharomyces cerevisiae].
    Golubkov VI; Kazakova TB; Igdal LG; Mukha GV
    Biokhimiia; 1973; 38(2):277-82. PubMed ID: 4592730
    [No Abstract]   [Full Text] [Related]  

  • 6. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure.
    Gupta JC; Mukherjee KJ
    Biotechnol Bioeng; 2002 Jun; 78(5):475-88. PubMed ID: 12115116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of decreasing oxygen feed rates on growth and metabolism of Torulaspora delbrueckii.
    Hanl L; Sommer P; Arneborg N
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):113-8. PubMed ID: 15290132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of comparative proteome analysis to reveal influence of cultivation conditions on asymmetric bioreduction of beta-keto ester by Saccharomyces cerevisiae.
    Lin J; Liu Q; Su E; Wei D; Yang S
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):831-9. PubMed ID: 18679677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift.
    Gonzalez B; de Graaf A; Renaud M; Sahm H
    Yeast; 2000 Apr; 16(6):483-97. PubMed ID: 10790685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1.
    Donalies UE; Stahl U
    Yeast; 2002 Apr; 19(6):475-84. PubMed ID: 11921096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.
    Kuyper M; Toirkens MJ; Diderich JA; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Jul; 5(10):925-34. PubMed ID: 15949975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem.
    Skoneczny M; Rytka J
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):313-9. PubMed ID: 10926859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Certain features of culturing Saccharomyces cerevisiae (Kiev strain) in a wine medium].
    Podgorskiĭ VS; Gavrilenko MN; Sumnevich VG; Kovalev NN; Domaretskiĭ VA; Zyrianova LF
    Mikrobiol Z; 2000; 62(4):20-5. PubMed ID: 11420998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic model of the aerobic growth of Saccharomyces cerevisiae.
    Bijkerk AH; Hall RJ
    Biotechnol Bioeng; 1977 Feb; 19(2):267-96. PubMed ID: 322740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor.
    Mashego MR; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2007 Jan; 7(1):48-66. PubMed ID: 17311584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of the activity and kinetic properties of malate dehydrogenase and pyruvate decarboxylase from Candida albicans, Malassezia pachydermatis, and Saccharomyces cerevisiae.
    Tylicki A; Ziolkowska G; Bolkun A; Siemieniuk M; Czerniecki J; Nowakiewicz A
    Can J Microbiol; 2008 Sep; 54(9):734-41. PubMed ID: 18772936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis.
    Jouhten P; Wiebe M; Penttilä M
    FEBS J; 2012 Sep; 279(18):3338-54. PubMed ID: 22672422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cryostability of yeast cells and their sensitivity to basic factors of freezing].
    Tsutsaeva AA; Kudokotseva OV
    Mikrobiologiia; 1989; 58(2):339-45. PubMed ID: 2682146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations.
    Luparia V; Soubeyrand V; Berges T; Julien A; Salmon JM
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):25-32. PubMed ID: 14745520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.