BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26996892)

  • 1. Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters.
    Jordan P; Choe JY; Boles E; Oreb M
    Sci Rep; 2016 Mar; 6():23502. PubMed ID: 26996892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the HXT13, HXT15 and HXT17 genes in Saccharomyces cerevisiae and stabilization of the HXT1 gene transcript by sugar-induced osmotic stress.
    Greatrix BW; van Vuuren HJ
    Curr Genet; 2006 Apr; 49(4):205-17. PubMed ID: 16397765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.
    Parmentier S; Arnaut F; Soetaert W; Vandamme EJ
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of the hexose transporter Hxt13p: an efflux pump that mediates resistance to miltefosine in yeast.
    Biswas C; Djordjevic JT; Zuo X; Boles E; Jolliffe KA; Sorrell TC; Chen SC
    Fungal Genet Biol; 2013 Dec; 61():23-32. PubMed ID: 24076076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transport of mannitol in
    Kohlmeier MG; Oresnik IJ
    Microbiology (Reading); 2023 Jul; 169(7):. PubMed ID: 37505890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo regulation of glucose transporter genes at glucose concentrations between 0 and 500 mg/L in a wild type of Saccharomyces cerevisiae.
    Klockow C; Stahl F; Scheper T; Hitzmann B
    J Biotechnol; 2008 Jun; 135(2):161-7. PubMed ID: 18455824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyol dehydrogenases of Azotobacter agilis.
    MARCUS L; MARR AG
    J Bacteriol; 1961 Aug; 82(2):224-32. PubMed ID: 13766585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154-->Cys forms of yeast xylitol dehydrogenase.
    Klimacek M; Hellmer H; Nidetzky B
    Biochem J; 2007 Jun; 404(3):421-9. PubMed ID: 17343568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae.
    Tanaka H; Murata K; Hashimoto W; Kawai S
    PLoS One; 2020; 15(11):e0242054. PubMed ID: 33175887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of some polyols by Rhizobium meliloti.
    Martinez De Drets G; Arias A
    J Bacteriol; 1970 Jul; 103(1):97-103. PubMed ID: 5423374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mannitol oxidase and polyol dehydrogenases in the digestive gland of gastropods: Correlations with phylogeny and diet.
    Lobo-da-Cunha A; Amaral-de-Carvalho D; Oliveira E; Alves Â; Costa V; Calado G
    PLoS One; 2018; 13(3):e0193078. PubMed ID: 29529078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential expression of sucrose transporter and polyol transporter genes during maturation of common plantain companion cells.
    Ramsperger-Gleixner M; Geiger D; Hedrich R; Sauer N
    Plant Physiol; 2004 Jan; 134(1):147-60. PubMed ID: 14630956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymes related to fructose utilization in Pseudomonas cepacia.
    Allenza P; Lee YN; Lessie TG
    J Bacteriol; 1982 Jun; 150(3):1348-56. PubMed ID: 6281243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose.
    Klepek YS; Geiger D; Stadler R; Klebl F; Landouar-Arsivaud L; Lemoine R; Hedrich R; Sauer N
    Plant Cell; 2005 Jan; 17(1):204-18. PubMed ID: 15598803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.
    Sedlak M; Ho NW
    Yeast; 2004 Jun; 21(8):671-84. PubMed ID: 15197732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.
    Smit A; Moses SG; Pretorius IS; Cordero Otero RR
    J Appl Microbiol; 2008 Apr; 104(4):1103-11. PubMed ID: 18179544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of new polyol/H+ symporters in Debaryomyces hansenii.
    Pereira I; Madeira A; Prista C; Loureiro-Dias MC; Leandro MJ
    PLoS One; 2014; 9(2):e88180. PubMed ID: 24505419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis.
    Chalumeau H; Delobbe A; Gay P
    J Bacteriol; 1978 Jun; 134(3):920-8. PubMed ID: 149113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Topochemical demonstration of the polyol-dehydrogenase system. Utilization of xylitol, sorbitol and mannitol].
    Stiller D; Hempel E
    Acta Histochem; 1970; 36(2):404-7. PubMed ID: 4393667
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.