These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26996892)

  • 21. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.
    Knoshaug EP; Vidgren V; Magalhães F; Jarvis EE; Franden MA; Zhang M; Singh A
    Yeast; 2015 Oct; 32(10):615-28. PubMed ID: 26129747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production.
    Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ
    Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues.
    Gao Z; Maurousset L; Lemoine R; Yoo SD; van Nocker S; Loescher W
    Plant Physiol; 2003 Apr; 131(4):1566-75. PubMed ID: 12692316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine.
    Conde A; Regalado A; Rodrigues D; Costa JM; Blumwald E; Chaves MM; Gerós H
    J Exp Bot; 2015 Feb; 66(3):889-906. PubMed ID: 25433029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis.
    Du J; Li S; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2150-6. PubMed ID: 20714641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the putative maltose transporters encoded by YDL247w and YJR160c.
    Day RE; Higgins VJ; Rogers PJ; Dawes IW
    Yeast; 2002 Sep; 19(12):1015-27. PubMed ID: 12210897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport.
    Batista AS; Miletti LC; Stambuk BU
    J Mol Microbiol Biotechnol; 2004; 8(1):26-33. PubMed ID: 15741738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae.
    Li J; Xu J; Cai P; Wang B; Ma Y; Benz JP; Tian C
    Appl Environ Microbiol; 2015 Jun; 81(12):4062-70. PubMed ID: 25841015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of sorbitol transporters expressed in the phloem of apple source leaves.
    Watari J; Kobae Y; Yamaki S; Yamada K; Toyofuku K; Tabuchi T; Shiratake K
    Plant Cell Physiol; 2004 Aug; 45(8):1032-41. PubMed ID: 15356329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter.
    Li H; Schmitz O; Alper HS
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):10215-10223. PubMed ID: 27730335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae.
    Reider Apel A; Ouellet M; Szmidt-Middleton H; Keasling JD; Mukhopadhyay A
    Sci Rep; 2016 Jan; 6():19512. PubMed ID: 26781725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular cloning and biochemical characterization of a NAD-dependent sorbitol dehydrogenase from cold-adapted Pseudomonas mandelii.
    DangThu Q; Nguyen TT; Jang SH; Lee C
    FEMS Microbiol Lett; 2021 Feb; 368(2):. PubMed ID: 33399820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of polyol/monosaccharide transporter 1 in Lotus japonicus.
    Liu L; Xu S; Tian L; Qin X; Wu G; Jiang H; Chen Y
    J Plant Physiol; 2024 Jan; 292():154146. PubMed ID: 38043244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and functional characterization of LjPLT4, a plasma membrane xylitol H(+)- symporter from Lotus japonicus.
    Kalliampakou KI; Kouri ED; Boleti H; Pavli O; Maurousset L; Udvardi MK; Katinakis P; Lemoine R; Flemetakis E
    Mol Membr Biol; 2011 Jan; 28(1):1-13. PubMed ID: 21219252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An assay for functional xylose transporters in Saccharomyces cerevisiae.
    Wang C; Shen Y; Hou J; Suo F; Bao X
    Anal Biochem; 2013 Nov; 442(2):241-8. PubMed ID: 23928049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of some sugars and polyols on the kinetics of sorbitol dehydrogenase.
    Treves C; Casey H; Zanobini A; Firenzuoli AM
    Physiol Chem Phys; 1980; 12(4):379-81. PubMed ID: 7192868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth and metabolism of mannitol by strains of Saccharomyces cerevisiae.
    Quain DE; Boulton CA
    J Gen Microbiol; 1987 Jul; 133(7):1675-84. PubMed ID: 3117965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity.
    Shinjoh M; Tomiyama N; Miyazaki T; Hoshino T
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2314-22. PubMed ID: 12506966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of 4.5--year use of xylitol and sorbitol on plaque.
    Mäkinen KK; Virtanen KK
    J Dent Res; 1978 Mar; 57(3):441-6. PubMed ID: 28341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.