These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 26996924)
1. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Sprang SR Biopolymers; 2016 Aug; 105(8):449-62. PubMed ID: 26996924 [TBL] [Abstract][Full Text] [Related]
2. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor. Tang W; Tu Y; Nayak SK; Woodson J; Jehl M; Ross EM J Biol Chem; 2006 Feb; 281(8):4746-53. PubMed ID: 16407201 [TBL] [Abstract][Full Text] [Related]
3. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins. Sprang SR; Chen Z; Du X Adv Protein Chem; 2007; 74():1-65. PubMed ID: 17854654 [TBL] [Abstract][Full Text] [Related]
4. Galpha Gbetagamma dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair. Neuwald AF Protein Sci; 2007 Nov; 16(11):2570-7. PubMed ID: 17962409 [TBL] [Abstract][Full Text] [Related]
5. Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Gulati S; Jin H; Masuho I; Orban T; Cai Y; Pardon E; Martemyanov KA; Kiser PD; Stewart PL; Ford CP; Steyaert J; Palczewski K Nat Commun; 2018 May; 9(1):1996. PubMed ID: 29777099 [TBL] [Abstract][Full Text] [Related]
6. Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein. Strickfaden SC; Pryciak PM Mol Biol Cell; 2008 Jan; 19(1):181-97. PubMed ID: 17978098 [TBL] [Abstract][Full Text] [Related]
7. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Siderovski DP; Willard FS Int J Biol Sci; 2005; 1(2):51-66. PubMed ID: 15951850 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a second, high affinity Gbetagamma binding site on Galphai1(GDP) subunits. Wang J; Sengupta P; Guo Y; Golebiewska U; Scarlata S J Biol Chem; 2009 Jun; 284(25):16906-16913. PubMed ID: 19369247 [TBL] [Abstract][Full Text] [Related]
9. Interaction of the muscarinic acetylcholine receptor M₂ subtype with G protein Gα(i/o) isotypes and Gβγ subunits as studied with the maltose-binding protein-M₂-Gα(i/o) fusion proteins expressed in Escherichia coli. Ichiyama S; Nemoto R; Tanabe H; Haga T J Biochem; 2014 Nov; 156(5):259-72. PubMed ID: 24881046 [TBL] [Abstract][Full Text] [Related]
10. A P-loop mutation in Gα subunits prevents transition to the active state: implications for G-protein signaling in fungal pathogenesis. Bosch DE; Willard FS; Ramanujam R; Kimple AJ; Willard MD; Naqvi NI; Siderovski DP PLoS Pathog; 2012 Feb; 8(2):e1002553. PubMed ID: 22383884 [TBL] [Abstract][Full Text] [Related]
11. New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins. Majumdar S; Ramachandran S; Cerione RA J Biol Chem; 2006 Apr; 281(14):9219-26. PubMed ID: 16469737 [TBL] [Abstract][Full Text] [Related]
12. Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8. Yuan C; Sato M; Lanier SM; Smrcka AV J Biol Chem; 2007 Jul; 282(27):19938-47. PubMed ID: 17446173 [TBL] [Abstract][Full Text] [Related]
13. Structure of the GDP-Pi complex of Gly203-->Ala gialpha1: a mimic of the ternary product complex of galpha-catalyzed GTP hydrolysis. Berghuis AM; Lee E; Raw AS; Gilman AG; Sprang SR Structure; 1996 Nov; 4(11):1277-90. PubMed ID: 8939752 [TBL] [Abstract][Full Text] [Related]
14. Regulator of G-protein signaling 3 (RGS3) inhibits Gbeta1gamma 2-induced inositol phosphate production, mitogen-activated protein kinase activation, and Akt activation. Shi CS; Lee SB; Sinnarajah S; Dessauer CW; Rhee SG; Kehrl JH J Biol Chem; 2001 Jun; 276(26):24293-300. PubMed ID: 11294858 [TBL] [Abstract][Full Text] [Related]
15. G protein activation without a GEF in the plant kingdom. Urano D; Jones JC; Wang H; Matthews M; Bradford W; Bennetzen JL; Jones AM PLoS Genet; 2012 Jun; 8(6):e1002756. PubMed ID: 22761582 [TBL] [Abstract][Full Text] [Related]
16. Recently duplicated plant heterotrimeric Gα proteins with subtle biochemical differences influence specific outcomes of signal-response coupling. Roy Choudhury S; Pandey S J Biol Chem; 2017 Sep; 292(39):16188-16198. PubMed ID: 28827312 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of the intrinsic arginine finger in heterotrimeric G proteins. Mann D; Teuber C; Tennigkeit SA; Schröter G; Gerwert K; Kötting C Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8041-E8050. PubMed ID: 27911799 [TBL] [Abstract][Full Text] [Related]
18. Structural and molecular characterization of a preferred protein interaction surface on G protein beta gamma subunits. Davis TL; Bonacci TM; Sprang SR; Smrcka AV Biochemistry; 2005 Aug; 44(31):10593-604. PubMed ID: 16060668 [TBL] [Abstract][Full Text] [Related]
19. Genetic and physical interactions between Gα subunits and components of the Gβγ dimer of heterotrimeric G proteins in Neurospora crassa. Won S; Michkov AV; Krystofova S; Garud AV; Borkovich KA Eukaryot Cell; 2012 Oct; 11(10):1239-48. PubMed ID: 22903975 [TBL] [Abstract][Full Text] [Related]
20. Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein alpha-subunit. Thomas CJ; Du X; Li P; Wang Y; Ross EM; Sprang SR Proc Natl Acad Sci U S A; 2004 May; 101(20):7560-5. PubMed ID: 15128951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]