These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26996970)

  • 1. Analytical gradients for excitation energies from frozen-density embedding.
    Kovyrshin A; Neugebauer J
    Phys Chem Chem Phys; 2016 Aug; 18(31):20955-75. PubMed ID: 26996970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical gradients for subsystem density functional theory within the slater-function-based amsterdam density functional program.
    Schlüns D; Franchini M; Götz AW; Neugebauer J; Jacob CR; Visscher L
    J Comput Chem; 2017 Feb; 38(4):238-249. PubMed ID: 27910112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical nuclear excited-state gradients for the Tamm-Dancoff approximation using uncoupled frozen-density embedding.
    Heuser J; Höfener S
    J Comput Chem; 2017 Oct; 38(27):2316-2325. PubMed ID: 28766728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation energies from frozen-density embedding with accurate embedding potentials.
    Artiukhin DG; Jacob CR; Neugebauer J
    J Chem Phys; 2015 Jun; 142(23):234101. PubMed ID: 26093544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Kinetic Energy Functionals for Interaction Energies in a Subsystem Formulation of Density Functional Theory.
    Götz AW; Beyhan SM; Visscher L
    J Chem Theory Comput; 2009 Dec; 5(12):3161-74. PubMed ID: 26602501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining frozen-density embedding with the conductor-like screening model using Lagrangian techniques for response properties.
    Schieschke N; Di Remigio R; Frediani L; Heuser J; Höfener S
    J Comput Chem; 2017 Jul; 38(19):1693-1703. PubMed ID: 28514521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.
    Nishimoto Y
    J Chem Phys; 2015 Sep; 143(9):094108. PubMed ID: 26342360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical energy gradient evaluation in relativistic and nonrelativistic density functional calculations.
    Wang F; Li L
    J Comput Chem; 2002 Jul; 23(9):920-7. PubMed ID: 11984853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical Nuclear Excited-State Gradients for the Second-Order Approximate Coupled-Cluster Singles and Doubles (CC2) Method Employing Uncoupled Frozen-Density Embedding.
    Heuser J; Höfener S
    J Chem Theory Comput; 2018 Sep; 14(9):4616-4628. PubMed ID: 30086227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular properties of excited electronic state: formalism, implementation, and applications of analytical second energy derivatives within the framework of the time-dependent density functional theory/molecular mechanics.
    Zeng Q; Liu J; Liang W
    J Chem Phys; 2014 May; 140(18):18A506. PubMed ID: 24832314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular properties via a subsystem density functional theory formulation: a common framework for electronic embedding.
    Höfener S; Gomes AS; Visscher L
    J Chem Phys; 2012 Jan; 136(4):044104. PubMed ID: 22299858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible implementation of frozen-density embedding for use in multilevel simulations.
    Jacob CR; Neugebauer J; Visscher L
    J Comput Chem; 2008 Apr; 29(6):1011-8. PubMed ID: 17987602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation.
    Liu J; Liang W
    J Chem Phys; 2011 Jul; 135(1):014113. PubMed ID: 21744894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental Effects with Frozen-Density Embedding in Real-Time Time-Dependent Density Functional Theory Using Localized Basis Functions.
    De Santis M; Belpassi L; Jacob CR; Severo Pereira Gomes A; Tarantelli F; Visscher L; Storchi L
    J Chem Theory Comput; 2020 Sep; 16(9):5695-5711. PubMed ID: 32786918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients.
    Heuser J; Höfener S
    J Comput Chem; 2016 May; 37(12):1092-101. PubMed ID: 26804310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Embedding Theories.
    Sun Q; Chan GK
    Acc Chem Res; 2016 Dec; 49(12):2705-2712. PubMed ID: 27993005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavefunction in density functional theory embedding for excited states: which wavefunctions, which densities?
    Daday C; König C; Neugebauer J; Filippi C
    Chemphyschem; 2014 Oct; 15(15):3205-17. PubMed ID: 25288452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical second derivatives of excited-state energy within the time-dependent density functional theory coupled with a conductor-like polarizable continuum model.
    Liu J; Liang W
    J Chem Phys; 2013 Jan; 138(2):024101. PubMed ID: 23320662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized Gradient Approximations of the Noninteracting Kinetic Energy from the Semiclassical Atom Theory: Rationalization of the Accuracy of the Frozen Density Embedding Theory for Nonbonded Interactions.
    Laricchia S; Fabiano E; Constantin LA; Della Sala F
    J Chem Theory Comput; 2011 Aug; 7(8):2439-51. PubMed ID: 26606618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.