BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26997140)

  • 1. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.
    Zhang X; Wu X; Centeno A; Ryan MP; Alford NM; Riley DJ; Xie F
    Sci Rep; 2016 Mar; 6():23364. PubMed ID: 26997140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal Cu
    Ma S; Dong L; Dong H; Wang J; Chen Y; Pang B; Feng J; Yu L; Zhao M
    J Colloid Interface Sci; 2019 Mar; 539():598-608. PubMed ID: 30611055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells.
    Wu Q; Xue C; Li Y; Zhou P; Liu W; Zhu J; Dai S; Zhu C; Yang S
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28466-73. PubMed ID: 26646015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilevel memristor effect in metal-semiconductor core-shell nanoparticles tested by scanning tunneling spectroscopy.
    Chakrabarti S; Pal AJ
    Nanoscale; 2015 Jun; 7(21):9886-93. PubMed ID: 25966930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.
    Erwin WR; Coppola A; Zarick HF; Arora P; Miller KJ; Bardhan R
    Nanoscale; 2014 Nov; 6(21):12626-34. PubMed ID: 25188374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2 ZnSnS4 nanostructure.
    Ha E; Lee LY; Wang J; Li F; Wong KY; Tsang SC
    Adv Mater; 2014 Jun; 26(21):3496-500. PubMed ID: 24644004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Dependent Localized Surface Plasma Resonance of Au Nanoparticles in Au/ZnO Photoanodes for Dye-Sensitized Solar Cells.
    Chang WC; Wan-Chin Y; Lin LY; Yu YJ; Peng YM
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2431-437. PubMed ID: 29648742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of a Lead-Free Perovskite Solar Cell Using CZTS as HTL to Achieve a 20% PCE by SCAPS-1D Simulation.
    Piñón Reyes AC; Ambrosio Lázaro RC; Monfil Leyva K; Luna López JA; Flores Méndez J; Heredia Jiménez AH; Muñoz Zurita AL; Severiano Carrillo F; Ojeda Durán E
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption characteristics and solar absorption capacity of Au core NR coated with various shell material.
    Xing L; Ha Y; Wang R; Li Z
    Nanotechnology; 2023 Jul; 34(38):. PubMed ID: 37336196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.
    Yun J; Hwang SH; Jang J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2055-63. PubMed ID: 25562329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Dual-Functional Mechanism of Light Absorption and Hole Transport of Cu
    Wu Y; Bi W; Shi Z; Zhuang X; Song Z; Liu S; Chen C; Xu L; Dai Q; Song H
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17509-17518. PubMed ID: 32192335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic.
    Chen MC; Yang YL; Chen SW; Li JH; Aklilu M; Tai Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):511-7. PubMed ID: 23286370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells.
    Kong J; Zhou ZJ; Li M; Zhou WH; Yuan SJ; Yao RY; Zhao Y; Wu SX
    Nanoscale Res Lett; 2013 Nov; 8(1):464. PubMed ID: 24191954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous copper zinc tin sulfide thin film as photocathode for double junction photoelectrochemical solar cells.
    Dai P; Zhang G; Chen Y; Jiang H; Feng Z; Lin Z; Zhan J
    Chem Commun (Camb); 2012 Mar; 48(24):3006-8. PubMed ID: 22322239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformations and Environmental Impacts of Copper Zinc Tin Sulfide Nanoparticles and Thin Films.
    Pramanik S; Trejo N; Mclntire E; Hudson-Smith NV; Tuga B; He J; Aydil E; Haynes CL
    ACS Appl Mater Interfaces; 2023 May; 15(20):24978-24988. PubMed ID: 37162157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstrain effects of laser-ablated Au nanoparticles in enhancing CZTS-based 1 Sun photodetector devices.
    Gezgin SY; Belaid W; Kabatas MAB; Eker YR; Kilic HŞ
    Phys Chem Chem Phys; 2024 Mar; 26(12):9534-9545. PubMed ID: 38456242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting.
    Bai Y; Butburee T; Yu H; Li Z; Amal R; Lu GQ; Wang L
    J Colloid Interface Sci; 2015 Jul; 449():246-51. PubMed ID: 25498878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.
    Pritom YA; Sikder DK; Zaman S; Hossain M
    Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.