These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26997245)

  • 1. Flexible Hall sensors based on graphene.
    Wang Z; Shaygan M; Otto M; Schall D; Neumaier D
    Nanoscale; 2016 Apr; 8(14):7683-7. PubMed ID: 26997245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Performance Hall Sensors Built on Chemical Vapor Deposition-Grown Bilayer Graphene.
    Dai T; Xu H; Chen S; Zhang Z
    ACS Omega; 2022 Jul; 7(29):25644-25649. PubMed ID: 35910148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity.
    Uzlu B; Wang Z; Lukas S; Otto M; Lemme MC; Neumaier D
    Sci Rep; 2019 Dec; 9(1):18059. PubMed ID: 31792254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.
    Joo MK; Kim J; Park JH; Nguyen VL; Kim KK; Lee YH; Suh D
    ACS Nano; 2016 Sep; 10(9):8803-11. PubMed ID: 27580305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth.
    Tsai LW; Tai NH
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10489-96. PubMed ID: 24922088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hall sensors batch-fabricated on all-CVD h-BN/graphene/h-BN heterostructures.
    Dankert A; Karpiak B; Dash SP
    Sci Rep; 2017 Nov; 7(1):15231. PubMed ID: 29123124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive Magnetic Sensors Enabled by Heterogeneous Integration of Graphene Hall Elements and Silicon Processing Circuits.
    Dai T; Chen C; Huang L; Jiang J; Peng LM; Zhang Z
    ACS Nano; 2020 Dec; 14(12):17606-17614. PubMed ID: 33211966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Flexible Chemoresistive Gas Sensors after Having Undergone Automated Bending Tests.
    Alvarado M; La Flor S; Llobet E; Romero A; Ramírez JL
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive Hall Sensors Based on Chemical Vapor Deposition Graphene.
    Tyagi A; Martini L; Gebeyehu ZM; Mišeikis V; Coletti C
    ACS Appl Nano Mater; 2024 Aug; 7(16):18329-18336. PubMed ID: 39206352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontiers of graphene-based Hall-effect sensors.
    Collomb D; Li P; Bending S
    J Phys Condens Matter; 2021 May; 33(24):. PubMed ID: 33853045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable fabrication of high-performance and flexible graphene strain sensors.
    Tian H; Shu Y; Cui YL; Mi WT; Yang Y; Xie D; Ren TL
    Nanoscale; 2014 Jan; 6(2):699-705. PubMed ID: 24281713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition.
    Fanton MA; Robinson JA; Puls C; Liu Y; Hollander MJ; Weiland BE; Labella M; Trumbull K; Kasarda R; Howsare C; Stitt J; Snyder DW
    ACS Nano; 2011 Oct; 5(10):8062-9. PubMed ID: 21905713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate.
    Salvatore GA; Münzenrieder N; Barraud C; Petti L; Zysset C; Büthe L; Ensslin K; Tröster G
    ACS Nano; 2013 Oct; 7(10):8809-15. PubMed ID: 23991756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of polydimethylsiloxane/graphene flexible strain sensors by using the scraping and coating method.
    Zhang ZQ; Zhang XL; Xu GS; Liu XJ; Guo Q; Feng Z; Jia JT; Ku PT
    Rev Sci Instrum; 2022 Jun; 93(6):065001. PubMed ID: 35778021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant spin Hall effect in graphene grown by chemical vapour deposition.
    Balakrishnan J; Koon GK; Avsar A; Ho Y; Lee JH; Jaiswal M; Baeck SJ; Ahn JH; Ferreira A; Cazalilla MA; Castro Neto AH; Özyilmaz B
    Nat Commun; 2014 Sep; 5():4748. PubMed ID: 25175340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Voltage-Operated Highly Sensitive Graphene Hall Elements by Ionic Gating.
    Kim J; Na J; Joo MK; Suh D
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4226-4232. PubMed ID: 30607940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene nanoparticle strain sensors with modulated sensitivity through tunneling types transition.
    Gao F; Qiu Y; Wei S; Yang H; Zhang J; Hu P
    Nanotechnology; 2019 Oct; 30(42):425501. PubMed ID: 31247593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible graphene-PZT ferroelectric nonvolatile memory.
    Lee W; Kahya O; Toh CT; Ozyilmaz B; Ahn JH
    Nanotechnology; 2013 Nov; 24(47):475202. PubMed ID: 24192319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.