These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 26997431)
1. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. Feng T; Ai X; An G; Yang P; Zhao Y ACS Nano; 2016 Apr; 10(4):4410-20. PubMed ID: 26997431 [TBL] [Abstract][Full Text] [Related]
2. Charge convertibility and near infrared photon co-enhanced cisplatin chemotherapy based on upconversion nanoplatform. Xu J; Kuang Y; Lv R; Yang P; Li C; Bi H; Liu B; Yang D; Dai Y; Gai S; He F; Xing B; Lin J Biomaterials; 2017 Jun; 130():42-55. PubMed ID: 28364630 [TBL] [Abstract][Full Text] [Related]
3. Dual-Responsive Carbon Dots for Tumor Extracellular Microenvironment Triggered Targeting and Enhanced Anticancer Drug Delivery. Feng T; Ai X; Ong H; Zhao Y ACS Appl Mater Interfaces; 2016 Jul; 8(29):18732-40. PubMed ID: 27367152 [TBL] [Abstract][Full Text] [Related]
4. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer. Peng N; Yu H; Yu W; Yang M; Chen H; Zou T; Deng K; Huang S; Liu Y Acta Biomater; 2020 Mar; 105():223-238. PubMed ID: 31926335 [TBL] [Abstract][Full Text] [Related]
5. Doxorubicin-Loaded Carbon Dots Lipid-Coated Calcium Phosphate Nanoparticles for Visual Targeted Delivery and Therapy of Tumor. Zhang J; Zhang H; Jiang J; Cui N; Xue X; Wang T; Wang X; He Y; Wang D Int J Nanomedicine; 2020; 15():433-444. PubMed ID: 32021189 [TBL] [Abstract][Full Text] [Related]
6. High loading and sustained-release system of doxorubicin-carbon dots as nanocarriers for cancer therapeutics. Prasad A; Sekar RP; Razana C A M; Sudhamani SD; Das A; Athipettah J; Ngashangva L Biomed Mater; 2024 Oct; 19(6):. PubMed ID: 39317335 [TBL] [Abstract][Full Text] [Related]
7. Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and pH Sensitive Nanocarriers. Jin Y; Wang Y; Liu X; Zhou J; Wang X; Feng H; Liu H Drug Des Devel Ther; 2020; 14():5205-5215. PubMed ID: 33268983 [TBL] [Abstract][Full Text] [Related]
8. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Yang Y; Xu L; Zhu W; Feng L; Liu J; Chen Q; Dong Z; Zhao J; Liu Z; Chen M Biomaterials; 2018 Feb; 156():121-133. PubMed ID: 29195181 [TBL] [Abstract][Full Text] [Related]
9. Ultrafast charge-conversional nanocarrier for tumor-acidity-activated targeted drug elivery. Liu J; Iqbal S; Du XJ; Yuan Y; Yang X; Li HJ; Wang J Biomater Sci; 2018 Jan; 6(2):350-355. PubMed ID: 29265134 [TBL] [Abstract][Full Text] [Related]
10. Preparation of multifunctional PEG-graft-Halloysite Nanotubes for Controlled Drug Release, Tumor Cell Targeting, and Bio-imaging. Yamina AM; Fizir M; Itatahine A; He H; Dramou P Colloids Surf B Biointerfaces; 2018 Oct; 170():322-329. PubMed ID: 29936385 [TBL] [Abstract][Full Text] [Related]
11. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Li J; Ke W; Li H; Zha Z; Han Y; Ge Z Adv Healthc Mater; 2015 Oct; 4(15):2206-19. PubMed ID: 26346421 [TBL] [Abstract][Full Text] [Related]
12. Nanocarriers responsive to a hypoxia gradient facilitate enhanced tumor penetration and improved anti-tumor efficacy. Zhen J; Tian S; Liu Q; Zheng C; Zhang Z; Ding Y; An Y; Liu Y; Shi L Biomater Sci; 2019 Jul; 7(7):2986-2995. PubMed ID: 31106796 [TBL] [Abstract][Full Text] [Related]
13. Cationic versus anionic core-shell nanogels for transport of cisplatin to lung cancer cells. Gonzalez-Urias A; Zapata-Gonzalez I; Licea-Claverie A; Licea-Navarro AF; Bernaldez-Sarabia J; Cervantes-Luevano K Colloids Surf B Biointerfaces; 2019 Oct; 182():110365. PubMed ID: 31344612 [TBL] [Abstract][Full Text] [Related]
14. Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy. Zhou H; Fan Z; Deng J; Lemons PK; Arhontoulis DC; Bowne WB; Cheng H Nano Lett; 2016 May; 16(5):3268-77. PubMed ID: 27057591 [TBL] [Abstract][Full Text] [Related]
15. Detachable Polyzwitterion-Coated Ternary Nanoparticles Based on Peptide Dendritic Carbon Dots for Efficient Drug Delivery in Cancer Therapy. Ma J; Kang K; Zhang Y; Yi Q; Gu Z ACS Appl Mater Interfaces; 2018 Dec; 10(50):43923-43935. PubMed ID: 30474366 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of cisplatin into PEG-wrapped ultrapurified large-inner-diameter MWCNTs for enhanced loading efficiency and release profile. Sui L; Yang T; Gao P; Meng A; Wang P; Wu Z; Wang J Int J Pharm; 2014 Aug; 471(1-2):157-65. PubMed ID: 24853461 [TBL] [Abstract][Full Text] [Related]
17. Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery. Zhao X; Wei Z; Zhao Z; Miao Y; Qiu Y; Yang W; Jia X; Liu Z; Hou H ACS Appl Mater Interfaces; 2018 Feb; 10(7):6608-6617. PubMed ID: 29368916 [TBL] [Abstract][Full Text] [Related]
18. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. He Y; Su Z; Xue L; Xu H; Zhang C J Control Release; 2016 May; 229():80-92. PubMed ID: 26945977 [TBL] [Abstract][Full Text] [Related]
19. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
20. Tumor microenvironment-specific nanoparticles activatable by stepwise transformation. Ko H; Son S; Jeon J; Thambi T; Kwon S; Chae YS; Kang YM; Park JH J Control Release; 2016 Jul; 234():68-78. PubMed ID: 27164544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]