BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 26997506)

  • 21. Role of Oxidative Stress in Diabetic Retinopathy and the Beneficial Effects of Flavonoids.
    Ola MS; Al-Dosari D; Alhomida AS
    Curr Pharm Des; 2018; 24(19):2180-2187. PubMed ID: 29766782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TGF-β Signaling Pathways in the Development of Diabetic Retinopathy.
    Callan A; Jha S; Valdez L; Baldado L; Tsin A
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Evolving Functions of Autophagy in Ocular Health: A Double-edged Sword.
    Chai P; Ni H; Zhang H; Fan X
    Int J Biol Sci; 2016; 12(11):1332-1340. PubMed ID: 27877085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroRNAs: Potential Targets in Diabetic Retinopathy.
    Li X; Yu ZW; Wang Y; Fu YH; Gao XY
    Horm Metab Res; 2020 Mar; 52(3):142-148. PubMed ID: 32215885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thioredoxin Interacting Protein (TXNIP) and Pathogenesis of Diabetic Retinopathy.
    Singh LP
    J Clin Exp Ophthalmol; 2013 Aug; 4():. PubMed ID: 24353900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy.
    Ola MS; Nawaz MI; Siddiquei MM; Al-Amro S; Abu El-Asrar AM
    J Diabetes Complications; 2012; 26(1):56-64. PubMed ID: 22226482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autophagy: A Novel Pharmacological Target in Diabetic Retinopathy.
    Adornetto A; Gesualdo C; Laganà ML; Trotta MC; Rossi S; Russo R
    Front Pharmacol; 2021; 12():695267. PubMed ID: 34234681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implication of oxidative stress in progression of diabetic retinopathy.
    Behl T; Kaur I; Kotwani A
    Surv Ophthalmol; 2016; 61(2):187-96. PubMed ID: 26074354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response.
    Liao YR; Li ZJ; Zeng P; Lan YQ
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1136-1142. PubMed ID: 28843858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.
    Wang W; Wang Q; Wan D; Sun Y; Wang L; Chen H; Liu C; Petersen RB; Li J; Xue W; Zheng L; Huang K
    Autophagy; 2017 May; 13(5):941-954. PubMed ID: 28409999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stress and diabetic retinopathy: development and treatment.
    Calderon GD; Juarez OH; Hernandez GE; Punzo SM; De la Cruz ZD
    Eye (Lond); 2017 Aug; 31(8):1122-1130. PubMed ID: 28452994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Cell biology of intraocular vascular diseases].
    Ishibashi T
    Nippon Ganka Gakkai Zasshi; 1999 Dec; 103(12):923-47. PubMed ID: 10643294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autophagy positively regulates Wnt signaling in mice with diabetic retinopathy.
    Ye S; Zhang Y; Wang X; Liang X; Wei M; Zong R; Liu Z; Chen Q
    Exp Ther Med; 2021 Oct; 22(4):1164. PubMed ID: 34504609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative stress and diabetic retinopathy.
    Kowluru RA; Chan PS
    Exp Diabetes Res; 2007; 2007():43603. PubMed ID: 17641741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chrysin Ameliorates Malfunction of Retinoid Visual Cycle through Blocking Activation of AGE-RAGE-ER Stress in Glucose-Stimulated Retinal Pigment Epithelial Cells and Diabetic Eyes.
    Kang MK; Lee EJ; Kim YH; Kim DY; Oh H; Kim SI; Kang YH
    Nutrients; 2018 Aug; 10(8):. PubMed ID: 30096827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of SIRT1 in diabetic retinopathy.
    Karbasforooshan H; Karimi G
    Biomed Pharmacother; 2018 Jan; 97():190-194. PubMed ID: 29091865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets.
    Chakravarthy H; Devanathan V
    J Mol Neurosci; 2018 Nov; 66(3):445-461. PubMed ID: 30293228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced glycation end products and diabetic retinopathy.
    Chen M; Curtis TM; Stitt AW
    Curr Med Chem; 2013; 20(26):3234-40. PubMed ID: 23745547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy.
    Yamagishi S; Matsui T
    Curr Pharm Biotechnol; 2011 Mar; 12(3):362-8. PubMed ID: 20939798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of advanced glycation in the pathogenesis of diabetic retinopathy.
    Stitt AW
    Exp Mol Pathol; 2003 Aug; 75(1):95-108. PubMed ID: 12834631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.