BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26997522)

  • 1. Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers.
    Takahashi H; Møller PR; Shedko SV; Ramatulla T; Joen SR; Zhang CG; Sideleva VG; Takata K; Sakai H; Goto A; Nishida M
    Mol Phylogenet Evol; 2016 Jun; 99():44-52. PubMed ID: 26997522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.
    Kitano J; Mori S
    Genes Genet Syst; 2016 Oct; 91(2):77-84. PubMed ID: 27301281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phylogenomic perspective on diversity, hybridization and evolutionary affinities in the stickleback genus Pungitius.
    Guo B; Fang B; Shikano T; Momigliano P; Wang C; Kravchenko A; Merilä J
    Mol Ecol; 2019 Sep; 28(17):4046-4064. PubMed ID: 31392804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeography and genetic structuring of European nine-spined sticklebacks (Pungitius pungitius)-mitochondrial DNA evidence.
    Teacher AG; Shikano T; Karjalainen ME; Merilä J
    PLoS One; 2011 May; 6(5):e19476. PubMed ID: 21589917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences.
    Takahashi H; Goto A
    Mol Phylogenet Evol; 2001 Oct; 21(1):135-55. PubMed ID: 11603944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits.
    Aldenhoven JT; Miller MA; Corneli PS; Shapiro MD
    Mol Ecol; 2010 Sep; 19(18):4061-76. PubMed ID: 20854276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear and mitochondrial data reveal different evolutionary processes in the Lake Tanganyika cichlid genus Tropheus.
    Egger B; Koblmüller S; Sturmbauer C; Sefc KM
    BMC Evol Biol; 2007 Aug; 7():137. PubMed ID: 17697335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population genetic structure and colonization history of short ninespine sticklebacks (Pungitius kaibarae).
    Bae HG; Suk HY
    Ecol Evol; 2015 Aug; 5(15):3075-89. PubMed ID: 26356579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete mitochondrial genome of the Ukrainian nine-spined stickleback
    Guo B; Shikano T; Vukić J; Šanda R; Merilä J
    Mitochondrial DNA B Resour; 2016 Feb; 1(1):68-69. PubMed ID: 33473411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (Pungitius pungitius) populations.
    Shikano T; Shimada Y; Herczeg G; Merilä J
    Mol Ecol; 2010 Mar; 19(6):1147-61. PubMed ID: 20163545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete mitochondrial genome of the Sakhalin nine-spined stickleback
    Shikano T; Guo B; Merilä J
    Mitochondrial DNA B Resour; 2016 Feb; 1(1):74-75. PubMed ID: 33473414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema.
    Lessios HA; Kessing BD; Pearse JS
    Evolution; 2001 May; 55(5):955-75. PubMed ID: 11430656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid male sterility between the fresh- and brackish-water types of ninespine stickleback Pungitius pungitius (Pisces, Gasterosteidae).
    Takahashi H; Nagai T; Goto A
    Zoolog Sci; 2005 Jan; 22(1):35-40. PubMed ID: 15684581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence of multiple markers and analysis methods defines the genetic distinctiveness of cryptic pitvipers.
    Mrinalini ; Thorpe RS; Creer S; Lallias D; Dawnay L; Stuart BL; Malhotra A
    Mol Phylogenet Evol; 2015 Nov; 92():266-79. PubMed ID: 26162672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic differentiation of the gobies Gymnogobius castaneus and G. taranetzi in the region surrounding the sea of Japan as inferred from a mitochondrial gene genealogy.
    Sota T; Mukai T; Shinozaki T; Sato H; Yodoe K
    Zoolog Sci; 2005 Jan; 22(1):87-93. PubMed ID: 15684588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic divergence and phylogenetic independence of Far Eastern species in subfamily Leuciscinae (Pisces: Cyprinidae) inferred from mitochondrial DNA analyses.
    Sasaki T; Kartavtsev YP; Chiba SN; Uematsu T; Sviridov VV; Hanzawa N
    Genes Genet Syst; 2007 Aug; 82(4):329-40. PubMed ID: 17895584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus.
    Shen KN; Jamandre BW; Hsu CC; Tzeng WN; Durand JD
    BMC Evol Biol; 2011 Mar; 11():83. PubMed ID: 21450111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae).
    Kingston SE; Adams LD; Rosel PE
    BMC Evol Biol; 2009 Oct; 9():245. PubMed ID: 19811651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide patterns of divergence and introgression after secondary contact between
    Yamasaki YY; Kakioka R; Takahashi H; Toyoda A; Nagano AJ; Machida Y; Møller PR; Kitano J
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190548. PubMed ID: 32654635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.