These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26997572)

  • 1. A Redox-Active Binder for Electrochemical Capacitor Electrodes.
    Benoit C; Demeter D; Bélanger D; Cougnon C
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5318-21. PubMed ID: 26997572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor.
    Pognon G; Cougnon C; Mayilukila D; Bélanger D
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3788-96. PubMed ID: 22803766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte.
    Chen YC; Lin LY
    J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
    Wang X; Liu B; Xiang Q; Wang Q; Hou X; Chen D; Shen G
    ChemSusChem; 2014 Jan; 7(1):308-13. PubMed ID: 24339208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance.
    Mai LQ; Minhas-Khan A; Tian X; Hercule KM; Zhao YL; Lin X; Xu X
    Nat Commun; 2013; 4():2923. PubMed ID: 24327172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors.
    Javed MS; Dai S; Wang M; Xi Y; Lang Q; Guo D; Hu C
    Nanoscale; 2015 Aug; 7(32):13610-8. PubMed ID: 26206591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Evaluation of Sustainable Binders for Environmentally Friendly Carbon-Based Supercapacitors.
    Landi G; La Notte L; Palma AL; Sorrentino A; Maglione MG; Puglisi G
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Redox-Polymer-Gel Hybrid Supercapacitors.
    Vlad A; Singh N; Melinte S; Gohy JF; Ajayan PM
    Sci Rep; 2016 Feb; 6():22194. PubMed ID: 26917470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Performance of Biopolymer-Based Hydrogel Electrolyte for Supercapacitors with Eco-Friendly Binders.
    Landi G; La Notte L; Palma AL; Puglisi G
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36298023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-Conducting Robust Cross-Linked Organic/Inorganic Polymer Composite as Effective Binder for Electrode of Electrochemical Capacitor.
    Park HG; Jeong JJ; Kim JH; Lee JS
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.
    Gryglewicz G; Śliwak A; Béguin F
    ChemSusChem; 2013 Aug; 6(8):1516-22. PubMed ID: 23794416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.
    Santos L; Ghilane J; Lacroix JC
    J Am Chem Soc; 2012 Mar; 134(12):5476-9. PubMed ID: 22385504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some factors influencing power and energy capabilities of RuO2 supercapacitors.
    Sopčić S; Mandić Z; Roković MK
    Acta Chim Slov; 2014; 61(2):272-9. PubMed ID: 25125110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polyoxovanadate as an advanced electrode material for supercapacitors.
    Chen HY; Wee G; Al-Oweini R; Friedl J; Tan KS; Wang Y; Wong CL; Kortz U; Stimming U; Srinivasan M
    Chemphyschem; 2014 Jul; 15(10):2162-9. PubMed ID: 24816786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.
    Han ZJ; Yamagiwa K; Yabuuchi N; Son JY; Cui YT; Oji H; Kogure A; Harada T; Ishikawa S; Aoki Y; Komaba S
    Phys Chem Chem Phys; 2015 Feb; 17(5):3783-95. PubMed ID: 25559330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.