These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26997626)

  • 1. The cardiovascular response to passive movement is joint dependent.
    Burns KJ; Pollock BS; McDaniel J
    Physiol Rep; 2016 Mar; 4(5):. PubMed ID: 26997626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response.
    Venturelli M; Layec G; Trinity J; Hart CR; Broxterman RM; Richardson RS
    J Appl Physiol (1985); 2017 Jan; 122(1):28-37. PubMed ID: 27834672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into the modulatory role of the mechanoreflex on central hemodynamics using passive leg movement in humans.
    Kruse NT; Hughes WE; Casey DP
    J Appl Physiol (1985); 2018 Aug; 125(2):545-552. PubMed ID: 29771607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the speed and range of motion of movement on the hyperemic response to passive leg movement.
    Gifford JR; Bloomfield T; Davis T; Addington A; McMullin E; Wallace T; Proffit M; Hanson B
    Physiol Rep; 2019 Apr; 7(8):e14064. PubMed ID: 31004411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiovascular and autonomic responses to passive arm or leg movement in men and women.
    Fouladi B; Joshi H; Edgell H
    Eur J Appl Physiol; 2019 Feb; 119(2):551-559. PubMed ID: 30446863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating the age-related attenuation of vascular function: Evidence supporting the efficacy of the single passive leg movement as a screening tool.
    Hydren JR; Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Kithas AC; Richardson RS
    J Appl Physiol (1985); 2019 Jun; 126(6):1525-1532. PubMed ID: 30946637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The passive leg movement technique for assessing vascular function: defining the distribution of blood flow and the impact of occluding the lower leg.
    Shields KL; Broxterman RM; Jarrett CL; Bisconti AV; Park SH; Richardson RS
    Exp Physiol; 2019 Oct; 104(10):1575-1584. PubMed ID: 31400019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive limb movement intervals results in repeated hyperemic responses in those with paraplegia.
    Burns KJ; Pollock BS; Stavres J; Kilbane M; Brochetti A; McDaniel J
    Spinal Cord; 2018 Oct; 56(10):940-948. PubMed ID: 29686256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive joint mobility in patas monkeys (Erythrocebus patas): rehabilitation of caged animals after release into a free-ranging environment.
    Turnquist JE
    Am J Phys Anthropol; 1985 May; 67(1):1-5. PubMed ID: 4061570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human strength curves.
    Kulig K; Andrews JG; Hay JG
    Exerc Sport Sci Rev; 1984; 12():417-66. PubMed ID: 6376139
    [No Abstract]   [Full Text] [Related]  

  • 11. Heart failure and movement-induced hemodynamics: partitioning the impact of central and peripheral dysfunction.
    Witman MA; Ives SJ; Trinity JD; Groot HJ; Stehlik J; Richardson RS
    Int J Cardiol; 2015 Jan; 178():232-8. PubMed ID: 25464261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal range of motion of joints in male subjects.
    Boone DC; Azen SP
    J Bone Joint Surg Am; 1979 Jul; 61(5):756-9. PubMed ID: 457719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of nitric oxide in passive leg movement-induced vasodilatation with age: insight from alterations in femoral perfusion pressure.
    Groot HJ; Trinity JD; Layec G; Rossman MJ; Ives SJ; Morgan DE; Bledsoe A; Richardson RS
    J Physiol; 2015 Sep; 593(17):3917-28. PubMed ID: 26108562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiovascular responses to static extension and flexion of arms and legs.
    Tokizawa K; Mizuno M; Hayashi N; Muraoka I
    Eur J Appl Physiol; 2006 May; 97(2):249-52. PubMed ID: 16633826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limb movement-induced hyperemia has a central hemodynamic component: evidence from a neural blockade study.
    Trinity JD; Amann M; McDaniel J; Fjeldstad AS; Barrett-O'Keefe Z; Runnels S; Morgan DE; Wray DW; Richardson RS
    Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1693-700. PubMed ID: 20802133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement.
    McDaniel J; Fjeldstad AS; Ives S; Hayman M; Kithas P; Richardson RS
    J Appl Physiol (1985); 2010 Jan; 108(1):76-84. PubMed ID: 19910331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Return of joint function by means of external bone fixation device (author's transl)].
    Volkov MV; Oganisjan OV
    Acta Chir Orthop Traumatol Cech; 1978 Oct; 45(5):365-71. PubMed ID: 735652
    [No Abstract]   [Full Text] [Related]  

  • 19. [The range of joint motions of the extremities in healthy Japanese people--the difference according to the age (author's transl)].
    Watanabe H; Ogata K; Amano T; Okabe T
    Nihon Seikeigeka Gakkai Zasshi; 1979 Mar; 53(3):275-61. PubMed ID: 448214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Range of motion measurements: reference values and a database for comparison studies.
    Soucie JM; Wang C; Forsyth A; Funk S; Denny M; Roach KE; Boone D;
    Haemophilia; 2011 May; 17(3):500-7. PubMed ID: 21070485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.