These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 26997766)
1. Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography. Nuyen B; Mansouri K; N Weinreb R J Curr Glaucoma Pract; 2012; 6(3):113-9. PubMed ID: 26997766 [TBL] [Abstract][Full Text] [Related]
2. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography. Mansouri K; Nuyen B; N Weinreb R Expert Rev Med Devices; 2013 Sep; 10(5):621-8. PubMed ID: 23972075 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography. Cakmak S; Altan C; Topcu H; Arici M; Pasaoglu I; Basarir B; Solmaz B Curr Eye Res; 2019 Sep; 44(9):968-974. PubMed ID: 30963796 [No Abstract] [Full Text] [Related]
4. Swept-Source OCT for Evaluating the Lamina Cribrosa: A Report by the American Academy of Ophthalmology. Takusagawa HL; Hoguet A; Junk AK; Nouri-Mahdavi K; Radhakrishnan S; Chen TC Ophthalmology; 2019 Sep; 126(9):1315-1323. PubMed ID: 30953743 [TBL] [Abstract][Full Text] [Related]
5. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Park HY; Shin HY; Park CK Am J Ophthalmol; 2014 Mar; 157(3):550-7. PubMed ID: 24239773 [TBL] [Abstract][Full Text] [Related]
6. [Aiming for zero blindness]. Nakazawa T Nippon Ganka Gakkai Zasshi; 2015 Mar; 119(3):168-93; discussion 194. PubMed ID: 25854109 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of the role of the lamina cribrosa in glaucoma using optical coherence tomography. Andrade JCF; Kanadani FN; Furlanetto RL; Lopes FS; Ritch R; Prata TS Surv Ophthalmol; 2022; 67(1):197-216. PubMed ID: 33548238 [TBL] [Abstract][Full Text] [Related]
9. Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography. Yoshikawa M; Akagi T; Hangai M; Ohashi-Ikeda H; Takayama K; Morooka S; Kimura Y; Nakano N; Yoshimura N Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):477-84. PubMed ID: 24398100 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Takayama K; Hangai M; Kimura Y; Morooka S; Nukada M; Akagi T; Ikeda HO; Matsumoto A; Yoshimura N Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4798-807. PubMed ID: 23778878 [TBL] [Abstract][Full Text] [Related]
11. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. Omodaka K; Horii T; Takahashi S; Kikawa T; Matsumoto A; Shiga Y; Maruyama K; Yuasa T; Akiba M; Nakazawa T PLoS One; 2015; 10(4):e0122347. PubMed ID: 25875096 [TBL] [Abstract][Full Text] [Related]
12. High resolution in vivo imaging of the lamina cribrosa. Park SC; Ritch R Saudi J Ophthalmol; 2011 Oct; 25(4):363-72. PubMed ID: 23960950 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413 [TBL] [Abstract][Full Text] [Related]
14. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Park SC; De Moraes CG; Teng CC; Tello C; Liebmann JM; Ritch R Ophthalmology; 2012 Jan; 119(1):3-9. PubMed ID: 21978593 [TBL] [Abstract][Full Text] [Related]
15. Lamina cribrosa surface position in idiopathic intracranial hypertension with swept-source optical coherence tomography. Pasaoglu I; Satana B; Altan C; Artunay O; Basarir B; Onmez FE; Inal A Indian J Ophthalmol; 2019 Jul; 67(7):1085-1088. PubMed ID: 31238417 [TBL] [Abstract][Full Text] [Related]
16. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169 [TBL] [Abstract][Full Text] [Related]
17. Measurement of Structural Parameters of the Lamina Cribrosa in Primary Open-Angle Glaucoma and Chronic Primary Angle-Closure Glaucoma by Optical Coherence Tomography and Its Correlations with Ocular Parameters. Hao L; Xiao H; Gao X; Xu X; Liu X Ophthalmic Res; 2019; 62(1):36-45. PubMed ID: 30783031 [TBL] [Abstract][Full Text] [Related]
18. Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques. Girard MJ; Tun TA; Husain R; Acharyya S; Haaland BA; Wei X; Mari JM; Perera SA; Baskaran M; Aung T; Strouthidis NG Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):865-74. PubMed ID: 25593025 [TBL] [Abstract][Full Text] [Related]
19. Comparison of enhanced depth imaging and high-penetration optical coherence tomography for imaging deep optic nerve head and parapapillary structures. Miki A; Ikuno Y; Jo Y; Nishida K Clin Ophthalmol; 2013; 7():1995-2001. PubMed ID: 24133368 [TBL] [Abstract][Full Text] [Related]