BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26997974)

  • 1. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system.
    Song W; Han X; Qian Y; Liu G; Yao G; Zhong Y; Qu Y
    Biotechnol Biofuels; 2016; 9():68. PubMed ID: 26997974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum.
    Du J; Zhang X; Li X; Zhao J; Liu G; Gao B; Qu Y
    Bioresour Technol; 2018 Oct; 266():19-25. PubMed ID: 29940438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate.
    Liao H; Li S; Wei Z; Shen Q; Xu Y
    Biotechnol Biofuels; 2014; 7(1):162. PubMed ID: 25419234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum.
    Yao G; Wu R; Kan Q; Gao L; Liu M; Yang P; Du J; Li Z; Qu Y
    Biotechnol Biofuels; 2016; 9():78. PubMed ID: 27034716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant Family 1 Carbohydrate-Binding Modules Derived From Fungal Cellulase Enhance Enzymatic Degradation of Lignocellulose as Novel Effective Accessory Protein.
    Jia H; Feng X; Huang J; Guo Y; Zhang D; Li X; Zhao J
    Front Microbiol; 2022; 13():876466. PubMed ID: 35898911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation.
    Peng S; Cao Q; Qin Y; Li X; Liu G; Qu Y
    Appl Microbiol Biotechnol; 2017 May; 101(9):3627-3636. PubMed ID: 28161729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel GH10 xylanase from
    Shibata N; Suetsugu M; Kakeshita H; Igarashi K; Hagihara H; Takimura Y
    Biotechnol Biofuels; 2017; 10():278. PubMed ID: 29201142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues.
    Qian Y; Zhong L; Gao J; Sun N; Wang Y; Sun G; Qu Y; Zhong Y
    Microb Cell Fact; 2017 Nov; 16(1):207. PubMed ID: 29162107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of cellulolytic enzyme production and performance by rational designing expression regulatory network and enzyme system composition.
    Li Z; Liu G; Qu Y
    Bioresour Technol; 2017 Dec; 245(Pt B):1718-1726. PubMed ID: 28684177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Constitutive Expression of Cellulolytic Enzymes in
    Waghmare PR; Waghmare PP; Gao L; Sun W; Qin Y; Liu G; Qu Y
    J Microbiol Biotechnol; 2021 May; 31(5):740-746. PubMed ID: 33746194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates.
    Martins LF; Kolling D; Camassola M; Dillon AJ; Ramos LP
    Bioresour Technol; 2008 Mar; 99(5):1417-24. PubMed ID: 17408952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipopeptide produced from
    Liu J; Zhu N; Yang J; Yang Y; Wang R; Liu L; Yuan H
    Biotechnol Biofuels; 2017; 10():301. PubMed ID: 29255484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods.
    Du J; Liang J; Gao X; Liu G; Qu Y
    Bioresour Technol; 2020 Jan; 295():122272. PubMed ID: 31669875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates.
    Rosgaard L; Pedersen S; Langston J; Akerhielm D; Cherry JR; Meyer AS
    Biotechnol Prog; 2007; 23(6):1270-6. PubMed ID: 18062669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose.
    Kang K; Wang S; Lai G; Liu G; Xing M
    BMC Biotechnol; 2013 May; 13():42. PubMed ID: 23688024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of heterologous transcription factors and their target genes into Penicillium oxalicum leads to increased lignocellulolytic enzyme production.
    Xia C; Li Z; Xu Y; Yang P; Gao L; Yan Q; Li S; Wang Y; Qu Y; Song X
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2675-2687. PubMed ID: 30719550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei.
    Ren M; Wang Y; Liu G; Zuo B; Zhang Y; Wang Y; Liu W; Liu X; Zhong Y
    J Microbiol; 2020 Aug; 58(8):687-695. PubMed ID: 32524344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification.
    Gao D; Haarmeyer C; Balan V; Whitehead TA; Dale BE; Chundawat SP
    Biotechnol Biofuels; 2014; 7(1):175. PubMed ID: 25530803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.