These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 26998490)
1. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency. Park Y; Kim HW; Yun J; Seo S; Park CJ; Lee JZ; Lee JH Biomed Res Int; 2016; 2016():8748023. PubMed ID: 26998490 [TBL] [Abstract][Full Text] [Related]
2. Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the cross-sectional area of a microfluidic channel. Kang G; Kim YJ; Moon HS; Lee JW; Yoo TK; Park K; Lee JH Biomicrofluidics; 2013; 7(4):44126. PubMed ID: 24404059 [TBL] [Abstract][Full Text] [Related]
3. Classification between Normal and Cancerous Human Urothelial Cells by Using Micro-Dimensional Electrochemical Impedance Spectroscopy Combined with Machine Learning. Jeong HJ; Kim K; Kim HW; Park Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298320 [TBL] [Abstract][Full Text] [Related]
4. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Han A; Yang L; Frazier AB Clin Cancer Res; 2007 Jan; 13(1):139-43. PubMed ID: 17200348 [TBL] [Abstract][Full Text] [Related]
5. Ex vivo characterization of age-associated impedance changes of single vascular endothelial cells using micro electrical impedance spectroscopy with a cell trap. Park Y; Cha JJ; Seo S; Yun J; Woo Kim H; Park C; Gang G; Lim J; Lee JH Biomicrofluidics; 2016 Jan; 10(1):014114. PubMed ID: 26865907 [TBL] [Abstract][Full Text] [Related]
6. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy. Ambrico M; Lasalvia M; Ligonzo T; Ambrico PF; Perna G; Capozzi V Med Phys; 2020 Oct; 47(10):5373-5382. PubMed ID: 32750750 [TBL] [Abstract][Full Text] [Related]
7. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells. Giana FE; Bonetto FJ; Bellotti MI Phys Rev E; 2018 Mar; 97(3-1):032410. PubMed ID: 29776129 [TBL] [Abstract][Full Text] [Related]
9. Dielectrophoretic and Electrical Impedance Differentiation of Cancerous Cells Based on Biophysical Phenotype. Turcan I; Caras I; Schreiner TG; Tucureanu C; Salageanu A; Vasile V; Avram M; Tincu B; Olariu MA Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677357 [TBL] [Abstract][Full Text] [Related]
10. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Heileman K; Daoud J; Tabrizian M Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534 [TBL] [Abstract][Full Text] [Related]
11. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Susloparova A; Koppenhöfer D; Vu XT; Weil M; Ingebrandt S Biosens Bioelectron; 2013 Feb; 40(1):50-6. PubMed ID: 22795530 [TBL] [Abstract][Full Text] [Related]
12. Impedance spectroscopy of changes in skin-electrode impedance induced by motion. Cömert A; Hyttinen J Biomed Eng Online; 2014 Nov; 13():149. PubMed ID: 25404355 [TBL] [Abstract][Full Text] [Related]
13. Detection of urinary bladder cancer with flow cytometry and hexaminolevulinate in urine samples. Cunderlíková B; Wahlqvist R; Berner A; Vasovic V; Warloe T; Nesland JM; Peng Q Cytopathology; 2007 Apr; 18(2):87-95. PubMed ID: 17397493 [TBL] [Abstract][Full Text] [Related]
14. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses. Tsai SL; Chiang Y; Wang MH; Chen MK; Jang LS Electrophoresis; 2014 Aug; 35(16):2392-400. PubMed ID: 24610717 [TBL] [Abstract][Full Text] [Related]
15. Relationship between frequency and impedance change in an infusion rate measurement system employing a capacitance sensor - biomed 2011. Amano H; Ogawa H; Maki H; Tsukamoto S; Yonezawa Y; Hahn AW; Caldwell WM Biomed Sci Instrum; 2011; 47():153-9. PubMed ID: 21525613 [TBL] [Abstract][Full Text] [Related]
16. A bioelectrical impedance phase angle measuring system for assessment of nutritional status. Zhang G; Huo X; Wu C; Zhang C; Duan Z Biomed Mater Eng; 2014; 24(6):3657-64. PubMed ID: 25227080 [TBL] [Abstract][Full Text] [Related]
17. Classification of normal and cancerous lung tissues by electrical impendence tomography. Gao J; Yue S; Chen J; Wang H Biomed Mater Eng; 2014; 24(6):2229-41. PubMed ID: 25226922 [TBL] [Abstract][Full Text] [Related]
18. High-Frequency Acoustic Impedance Imaging of Cancer Cells. Fadhel MN; Berndl ES; Strohm EM; Kolios MC Ultrasound Med Biol; 2015 Oct; 41(10):2700-13. PubMed ID: 26166459 [TBL] [Abstract][Full Text] [Related]
19. [Electrical impedance spectroscopy for evaluation of the influence of simulated weightlessness on the electrical properties of rat blood]. Gong Y; Chen L; Shen B; Ma Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):653-7, 662. PubMed ID: 23016410 [TBL] [Abstract][Full Text] [Related]
20. Electrical Impedance Spectroscopy for Characterization of Prostate PC-3 and DU 145 Cancer Cells. Teixeira VS; Barth T; Labitzky V; Schumacher U; Krautschneider W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6485-6489. PubMed ID: 31947327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]