These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 26998537)

  • 1. Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications.
    Eng AY; Chua CK; Pumera M
    Phys Chem Chem Phys; 2016 Apr; 18(14):9673-81. PubMed ID: 26998537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D hierarchical porous V
    Hu T; Liu Y; Zhang Y; Chen M; Zheng J; Tang J; Meng C
    J Colloid Interface Sci; 2018 Dec; 531():382-393. PubMed ID: 30041115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage.
    Li Z; Qin Z; Yang B; Guo J; Wang H; Zhang W; Lv X; Stack A
    Nanotechnology; 2015 Feb; 26(6):065401. PubMed ID: 25611749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of 3D Graphene-Oxide Spheres and Their Derived Hierarchical Porous Structures for High Performance Supercapacitors.
    Li Z; Gadipelli S; Yang Y; Guo Z
    Small; 2017 Nov; 13(44):. PubMed ID: 29024386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-based nanowire supercapacitors.
    Chen Z; Yu D; Xiong W; Liu P; Liu Y; Dai L
    Langmuir; 2014 Apr; 30(12):3567-71. PubMed ID: 24588395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-doped Carbon Microfiber with Wrinkled Surface for High Performance Supercapacitors.
    Liu R; Pan L; Jiang J; Xi X; Liu X; Wu D
    Sci Rep; 2016 Feb; 6():21750. PubMed ID: 26888721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-light Hierarchical Graphene Electrode for Binder-Free Supercapacitors and Lithium-Ion Battery Anodes.
    Zuo Z; Kim TY; Kholmanov I; Li H; Chou H; Li Y
    Small; 2015 Oct; 11(37):4922-30. PubMed ID: 26153327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteroatom-Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties.
    Hao X; Wang J; Ding B; Shen L; Xu Y; Wang Y; Chang Z; Dou H; Lu X; Zhang X
    Chemistry; 2016 Nov; 22(46):16668-16674. PubMed ID: 27704674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors.
    Ma L; Shen X; Ji Z; Cai X; Zhu G; Chen K
    J Colloid Interface Sci; 2015 Feb; 440():211-8. PubMed ID: 25460708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance.
    Ma W; Chen S; Yang S; Chen W; Weng W; Zhu M
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14622-7. PubMed ID: 27239680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance.
    He S; Chen W
    Nanoscale; 2015 Apr; 7(16):6957-90. PubMed ID: 25522064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode.
    Ye S; Feng J; Wu P
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7122-9. PubMed ID: 23844989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors.
    Cui Y; Cheng QY; Wu H; Wei Z; Han BH
    Nanoscale; 2013 Sep; 5(18):8367-74. PubMed ID: 23793833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors.
    Guan Q; Cheng J; Wang B; Ni W; Gu G; Li X; Huang L; Yang G; Nie F
    ACS Appl Mater Interfaces; 2014 May; 6(10):7626-32. PubMed ID: 24716615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile and Scalable Synthesis Method for High-Quality Few-Layer Graphene through Solution-Based Exfoliation of Graphite.
    Wee BH; Wu TF; Hong JD
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4548-4557. PubMed ID: 28094493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of Defect Sites in Graphene with RuO2 for High Capacitive Performance.
    Yang F; Zhang L; Zuzuarregui A; Gregorczyk K; Li L; Beltrán M; Tollan C; Brede J; Rogero C; Chuvilin A; Knez M
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20513-9. PubMed ID: 26331286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance.
    Zhang Y; Tao B; Xing W; Zhang L; Xue Q; Yan Z
    Nanoscale; 2016 Apr; 8(15):7889-98. PubMed ID: 26660668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrodeposition of porous graphene networks on nickel foams as supercapacitor electrodes with high capacitance and remarkable cyclic stability.
    Yang S; Deng B; Ge R; Zhang L; Wang H; Zhang Z; Zhu W; Wang G
    Nanoscale Res Lett; 2014 Dec; 9(1):2496. PubMed ID: 26089003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled electrochemical doping of graphene-based 3D nanoarchitecture electrodes for supercapacitors and capacitive deionisation.
    Abdelkader AM; Fray DJ
    Nanoscale; 2017 Oct; 9(38):14548-14557. PubMed ID: 28930339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.