These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 2699856)

  • 1. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development.
    Gerhart J; Danilchik M; Doniach T; Roberts S; Rowning B; Stewart R
    Development; 1989; 107 Suppl():37-51. PubMed ID: 2699856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M; Kobayakawa Y; Yamana K
    Development; 1993 May; 118(1):163-70. PubMed ID: 19140289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperdorsoanterior embryos from Xenopus eggs treated with D2O.
    Scharf SR; Rowning B; Wu M; Gerhart JC
    Dev Biol; 1989 Jul; 134(1):175-88. PubMed ID: 2659411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vegetal determinants required for the Spemann organizer move equatorially during the first cell cycle.
    Sakai M
    Development; 1996 Jul; 122(7):2207-14. PubMed ID: 8681801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical rotation is required for the correct spatial expression of nr3, sia and gsc in Xenopus embryos.
    Medina A; Wendler SR; Steinbeisser H
    Int J Dev Biol; 1997 Oct; 41(5):741-5. PubMed ID: 9415495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis.
    Cleine JH; Dixon KE
    J Embryol Exp Morphol; 1985 Dec; 90():79-99. PubMed ID: 3834040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
    Vincent JP; Oster GF; Gerhart JC
    Dev Biol; 1986 Feb; 113(2):484-500. PubMed ID: 3949075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of primary embryonic organizer activity with the future dorsal side of amphibian eggs and early embryos.
    Malacinski GM; Chung HM; Asashima M
    Dev Biol; 1980 Jun; 77(2):449-62. PubMed ID: 7399132
    [No Abstract]   [Full Text] [Related]  

  • 10. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage.
    Zoltewicz JS; Gerhart JC
    Dev Biol; 1997 Dec; 192(2):482-91. PubMed ID: 9441683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula.
    Stewart RM; Gerhart JC
    Development; 1990 Jun; 109(2):363-72. PubMed ID: 2401200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis.
    Kageura H
    Development; 1997 Apr; 124(8):1543-51. PubMed ID: 9108370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte.
    Holowacz T; Elinson RP
    Development; 1993 Sep; 119(1):277-85. PubMed ID: 8275862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal of developmental competence in inverted amphibian eggs.
    Chung HM; Malacinski GM
    J Embryol Exp Morphol; 1983 Feb; 73():207-20. PubMed ID: 6683745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis.
    Vodicka MA; Gerhart JC
    Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep cytoplasmic rearrangements during early development in Xenopus laevis.
    Danilchik MV; Denegre JM
    Development; 1991 Apr; 111(4):845-56. PubMed ID: 1879356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-autonomous and inductive processes among three embryonic domains control dorsal-ventral and anterior-posterior development of Xenopus laevis.
    Sakai M
    Dev Growth Differ; 2008 Jan; 50(1):49-62. PubMed ID: 17999689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of the dorsal activity found in the vegetal cortical cytoplasm of Xenopus eggs.
    Holowacz T; Elinson RP
    Development; 1995 Sep; 121(9):2789-98. PubMed ID: 7555707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern formation in amphibian embryos prevented from undergoing the classical "rotation response" to egg activation.
    Neff AW; Malacinski GM; Wakahara M; Jurand A
    Dev Biol; 1983 May; 97(1):103-12. PubMed ID: 6682386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo.
    Gimlich RL
    Dev Biol; 1986 Jun; 115(2):340-52. PubMed ID: 3709967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.