BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26998712)

  • 1. Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA.
    Karakas E; Taveneau C; Bressanelli S; Marchi M; Robert B; Abel S
    J Biomol Struct Dyn; 2017 Jan; 35(1):159-181. PubMed ID: 26998712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water.
    Abel S; Dupradeau FY; Marchi M
    J Chem Theory Comput; 2012 Nov; 8(11):4610-23. PubMed ID: 26605618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized reverse micelle surfactant system for high-resolution NMR spectroscopy of encapsulated proteins and nucleic acids dissolved in low viscosity fluids.
    Dodevski I; Nucci NV; Valentine KG; Sidhu GK; O'Brien ES; Pardi A; Wand AJ
    J Am Chem Soc; 2014 Mar; 136(9):3465-74. PubMed ID: 24495164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of amphiphilic surfactant LDAO on the solubilization of DOPC vesicles and on the activity of Ca(2+)-ATPase reconstituted in DOPC vesicles.
    Karlovská J; Devínsky F; Balgavý P
    Gen Physiol Biophys; 2007 Dec; 26(4):290-7. PubMed ID: 18281747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field.
    Madej BD; Gould IR; Walker RC
    J Phys Chem B; 2015 Sep; 119(38):12424-35. PubMed ID: 26359797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation.
    Stackhouse CI; Pierson KN; Labrecque CL; Mawson C; Berg J; Fuglestad B; Nucci NV
    Biophys Chem; 2024 Aug; 311():107269. PubMed ID: 38815545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modeling and simulation of water near model micelles: diffusion, rotational relaxation and structure at the hydration interface.
    Sterpone F; Marchetti G; Pierleoni C; Marchi M
    J Phys Chem B; 2006 Jun; 110(23):11504-10. PubMed ID: 16771426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHARMM36 united atom chain model for lipids and surfactants.
    Lee S; Tran A; Allsopp M; Lim JB; Hénin J; Klauda JB
    J Phys Chem B; 2014 Jan; 118(2):547-56. PubMed ID: 24341749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force field dependence of phospholipid headgroup and acyl chain properties: comparative molecular dynamics simulations of DMPC bilayers.
    Prakash P; Sankararamakrishnan R
    J Comput Chem; 2010 Jan; 31(2):266-77. PubMed ID: 19475632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphere-to-rod transitions of nonionic surfactant micelles in aqueous solution modeled by molecular dynamics simulations.
    Velinova M; Sengupta D; Tadjer AV; Marrink SJ
    Langmuir; 2011 Dec; 27(23):14071-7. PubMed ID: 21981373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of sodium dodecyl sulfate micelles in water-the effect of the force field.
    Tang X; Koenig PH; Larson RG
    J Phys Chem B; 2014 Apr; 118(14):3864-80. PubMed ID: 24620851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of heptane-1,2,3-triol on the size and shape of LDAO micelles. Implications for the crystallisation of membrane proteins.
    Timmins PA; Hauk J; Wacker T; Welte W
    FEBS Lett; 1991 Mar; 280(1):115-20. PubMed ID: 2009955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane Protein Simulations Using AMBER Force Field and Berger Lipid Parameters.
    Cordomí A; Caltabiano G; Pardo L
    J Chem Theory Comput; 2012 Mar; 8(3):948-58. PubMed ID: 26593357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LIPID11: a modular framework for lipid simulations using amber.
    Skjevik ÅA; Madej BD; Walker RC; Teigen K
    J Phys Chem B; 2012 Sep; 116(36):11124-36. PubMed ID: 22916730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary interactions and salt-induced coalescence of spherical micelles of cationic surfactants from molecular dynamics simulations.
    Sangwai AV; Sureshkumar R
    Langmuir; 2012 Jan; 28(2):1127-35. PubMed ID: 22149605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble.
    Coimbra JT; Sousa SF; Fernandes PA; Rangel M; Ramos MJ
    J Biomol Struct Dyn; 2014; 32(1):88-103. PubMed ID: 23730894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Cetyltrimethylammonium Bromide/Hexanol Reverse Micelles by Experimentally Benchmarked Molecular Dynamics Simulations.
    Fuglestad B; Gupta K; Wand AJ; Sharp KA
    Langmuir; 2016 Feb; 32(7):1674-84. PubMed ID: 26840651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulations of dodecyl-β-maltoside micelles in water: influence of the headgroup conformation and force field parameters.
    Abel S; Dupradeau FY; Raman EP; MacKerell AD; Marchi M
    J Phys Chem B; 2011 Jan; 115(3):487-99. PubMed ID: 21192681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.