These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 26998731)
1. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. Liu Y; Busscher HJ; Zhao B; Li Y; Zhang Z; van der Mei HC; Ren Y; Shi L ACS Nano; 2016 Apr; 10(4):4779-89. PubMed ID: 26998731 [TBL] [Abstract][Full Text] [Related]
2. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935 [TBL] [Abstract][Full Text] [Related]
3. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms. Guo R; Li K; Tian B; Wang C; Chen X; Jiang X; He H; Hong W J Nanobiotechnology; 2021 Aug; 19(1):232. PubMed ID: 34362397 [TBL] [Abstract][Full Text] [Related]
4. Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Su Y; Zhao L; Meng F; Qiao Z; Yao Y; Luo J Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():921-930. PubMed ID: 30274129 [TBL] [Abstract][Full Text] [Related]
5. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Zhao Z; Ding C; Wang Y; Tan H; Li J Biomater Sci; 2019 Mar; 7(4):1643-1651. PubMed ID: 30723851 [TBL] [Abstract][Full Text] [Related]
6. Synergy between pH- and hypoxia-responsiveness in antibiotic-loaded micelles for eradicating mature, infectious biofilms. Su L; Li Y; Tian S; Huang F; Ren Y; Yang C; van der Mei HC; Busscher HJ; Shi L Acta Biomater; 2022 Dec; 154():559-571. PubMed ID: 36243368 [TBL] [Abstract][Full Text] [Related]
7. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli. Guo R; Li K; Qin J; Niu S; Hong W Nanoscale; 2020 May; 12(20):11251-11266. PubMed ID: 32412567 [TBL] [Abstract][Full Text] [Related]
8. Bacterial biofilm destruction by size/surface charge-adaptive micelles. Chen M; Wei J; Xie S; Tao X; Zhang Z; Ran P; Li X Nanoscale; 2019 Jan; 11(3):1410-1422. PubMed ID: 30608101 [TBL] [Abstract][Full Text] [Related]
9. Polyzwitterionic micelles with antimicrobial-conjugation for eradication of drug-resistant bacterial biofilms. Qian Y; Hu X; Wang J; Li Y; Liu Y; Xie L Colloids Surf B Biointerfaces; 2023 Nov; 231():113542. PubMed ID: 37717312 [TBL] [Abstract][Full Text] [Related]
10. Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms-An intravital imaging study in mice. Tian S; Su L; Liu Y; Cao J; Yang G; Ren Y; Huang F; Liu J; An Y; van der Mei HC; Busscher HJ; Shi L Sci Adv; 2020 Aug; 6(33):eabb1112. PubMed ID: 32851173 [TBL] [Abstract][Full Text] [Related]
11. Surface Charge Switchable Supramolecular Nanocarriers for Nitric Oxide Synergistic Photodynamic Eradication of Biofilms. Hu D; Deng Y; Jia F; Jin Q; Ji J ACS Nano; 2020 Jan; 14(1):347-359. PubMed ID: 31887012 [TBL] [Abstract][Full Text] [Related]
12. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Wang DY; van der Mei HC; Ren Y; Busscher HJ; Shi L Front Chem; 2019; 7():872. PubMed ID: 31998680 [TBL] [Abstract][Full Text] [Related]
13. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development. Chen X; Guo R; Wang C; Li K; Jiang X; He H; Hong W J Nanobiotechnology; 2021 Apr; 19(1):99. PubMed ID: 33836750 [TBL] [Abstract][Full Text] [Related]
14. Micelles of enzymatically synthesized PEG-poly(amine-co-ester) block copolymers as pH-responsive nanocarriers for docetaxel delivery. Zhang X; Liu B; Yang Z; Zhang C; Li H; Luo X; Luo H; Gao D; Jiang Q; Liu J; Jiang Z Colloids Surf B Biointerfaces; 2014 Mar; 115():349-58. PubMed ID: 24398083 [TBL] [Abstract][Full Text] [Related]
15. pH-Responsive copolymer micelles to enhance itraconazole efficacy against Candida albicans biofilms. Albayaty YN; Thomas N; Ramírez-García PD; Davis TP; Quinn JF; Whittaker MR; Prestidge CA J Mater Chem B; 2020 Feb; 8(8):1672-1681. PubMed ID: 32016213 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. Barros CHN; Hiebner DW; Fulaz S; Vitale S; Quinn L; Casey E J Nanobiotechnology; 2021 Apr; 19(1):104. PubMed ID: 33849570 [TBL] [Abstract][Full Text] [Related]
17. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. Cong Y; Quan C; Liu M; Liu J; Huang G; Tong G; Yin Y; Zhang C; Jiang Q J Biomater Sci Polym Ed; 2015; 26(11):629-43. PubMed ID: 25994241 [TBL] [Abstract][Full Text] [Related]
18. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192 [TBL] [Abstract][Full Text] [Related]
19. pH-sensitive micelles self-assembled from polymer brush (PAE- Huang X; Liao W; Zhang G; Kang S; Zhang CY Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738 [TBL] [Abstract][Full Text] [Related]
20. Enzyme responsive copolymer micelles enhance the anti-biofilm efficacy of the antiseptic chlorhexidine. Albayaty YN; Thomas N; Jambhrunkar M; Al-Hawwas M; Kral A; Thorn CR; Prestidge CA Int J Pharm; 2019 Jul; 566():329-341. PubMed ID: 31152793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]