BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26998866)

  • 1. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering.
    Zhong Q; Li W; Su X; Li G; Zhou Y; Kundu SC; Yao J; Cai Y
    Colloids Surf B Biointerfaces; 2016 Jul; 143():56-63. PubMed ID: 26998866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering.
    Jin HH; Kim DH; Kim TW; Shin KK; Jung JS; Park HC; Yoon SY
    Int J Biol Macromol; 2012 Dec; 51(5):1079-85. PubMed ID: 22959955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.
    Asaoka T; Ohtake S; Furukawa KS; Tamura A; Ushida T
    J Biomed Mater Res A; 2013 Nov; 101(11):3295-300. PubMed ID: 23983180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications.
    Ribeiro CC; Barrias CC; Barbosa MA
    J Mater Sci Mater Med; 2006 May; 17(5):455-63. PubMed ID: 16688586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks.
    Xie M; Olderøy MØ; Andreassen JP; Selbach SM; Strand BL; Sikorski P
    Acta Biomater; 2010 Sep; 6(9):3665-75. PubMed ID: 20359556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering.
    Diogo GS; Gaspar VM; Serra IR; Fradique R; Correia IJ
    Biofabrication; 2014 Jun; 6(2):025001. PubMed ID: 24657988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo.
    Qiao P; Wang J; Xie Q; Li F; Dong L; Xu T
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4633-9. PubMed ID: 24094170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies.
    Lin HR; Yeh YJ
    J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):52-65. PubMed ID: 15368228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering.
    Venkatesan J; Pallela R; Bhatnagar I; Kim SK
    Int J Biol Macromol; 2012 Dec; 51(5):1033-42. PubMed ID: 22947451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PGS/HAp Microporous Composite Scaffold Obtained in the TIPS-TCL-SL Method: An Innovation for Bone Tissue Engineering.
    Piszko P; Włodarczyk M; Zielińska S; Gazińska M; Płociński P; Rudnicka K; Szwed A; Krupa A; Grzymajło M; Sobczak-Kupiec A; Słota D; Kobielarz M; Wojtków M; Szustakiewicz K
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity.
    Turco G; Marsich E; Bellomo F; Semeraro S; Donati I; Brun F; Grandolfo M; Accardo A; Paoletti S
    Biomacromolecules; 2009 Jun; 10(6):1575-83. PubMed ID: 19348419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.
    Liu M; Dai L; Shi H; Xiong S; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid scaffolds based on PLGA and silk for bone tissue engineering.
    Sheikh FA; Ju HW; Moon BM; Lee OJ; Kim JH; Park HJ; Kim DW; Kim DK; Jang JE; Khang G; Park CH
    J Tissue Eng Regen Med; 2016 Mar; 10(3):209-21. PubMed ID: 25628059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.
    Jang J; Seol YJ; Kim HJ; Kundu J; Kim SW; Cho DW
    J Mech Behav Biomed Mater; 2014 Sep; 37():69-77. PubMed ID: 24880568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration.
    Chae T; Yang H; Leung V; Ko F; Troczynski T
    J Mater Sci Mater Med; 2013 Aug; 24(8):1885-94. PubMed ID: 23695359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering.
    Yang M; Mandal N; Shuai Y; Zhou G; Min S; Zhu L
    Biomed Mater Eng; 2014; 24(1):815-24. PubMed ID: 24211968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.