These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26998899)

  • 1. Rapid prototyping of electrochemical lateral flow devices: stencilled electrodes.
    Aller Pellitero M; Kitsara M; Eibensteiner F; del Campo FJ
    Analyst; 2016 Apr; 141(8):2515-22. PubMed ID: 26998899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes.
    de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC
    Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel LTCC electrochemical cell construction and characterization: a detection compartment for portable devices.
    Pesquero NC; Gongora-Rubio MR; Yamanaka H
    Analyst; 2013 Aug; 138(15):4298-304. PubMed ID: 23748910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bench-Top Fabrication of an All-PDMS Microfluidic Electrochemical Cell Sensor Integrating Micro/Nanostructured Electrodes.
    Saem S; Zhu Y; Luu H; Moran-Mirabal J
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28362329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen.
    Yan M; Zang D; Ge S; Ge L; Yu J
    Biosens Bioelectron; 2012; 38(1):355-61. PubMed ID: 22770827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter.
    Yuen PK; Goral VN
    Lab Chip; 2010 Feb; 10(3):384-7. PubMed ID: 20091012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prototyping of microfluidic devices with integrated wrinkled gold micro-/nano textured electrodes for electrochemical analysis.
    Gabardo CM; Adams-McGavin RC; Vanderfleet OM; Soleymani L
    Analyst; 2015 Aug; 140(16):5781-8. PubMed ID: 26178719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.
    Randviir EP; Brownson DA; Metters JP; Kadara RO; Banks CE
    Phys Chem Chem Phys; 2014 Mar; 16(10):4598-611. PubMed ID: 24458292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New directions in screen printed electroanalytical sensors: an overview of recent developments.
    Metters JP; Kadara RO; Banks CE
    Analyst; 2011 Mar; 136(6):1067-76. PubMed ID: 21283890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prototyping of wrinkled nano-/microstructured electrodes for electrochemical DNA detection.
    Woo SM; Gabardo CM; Soleymani L
    Anal Chem; 2014 Dec; 86(24):12341-7. PubMed ID: 25395190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.
    Snowden ME; King PH; Covington JA; Macpherson JV; Unwin PR
    Anal Chem; 2010 Apr; 82(8):3124-31. PubMed ID: 20329754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical impedance spectroscopy versus cyclic voltammetry for the electroanalytical sensing of capsaicin utilising screen printed carbon nanotube electrodes.
    Randviir EP; Metters JP; Stainton J; Banks CE
    Analyst; 2013 May; 138(10):2970-81. PubMed ID: 23539507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized commercial desktop cutter technique for rapid-prototyping of microfluidic devices and application to Taylor dispersion.
    Taylor AW; Harris DM
    Rev Sci Instrum; 2019 Nov; 90(11):116102. PubMed ID: 31779402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digitally Controlled Procedure for Assembling Fully Drawn Paper-Based Electroanalytical Platforms.
    Dossi N; Petrazzi S; Toniolo R; Tubaro F; Terzi F; Piccin E; Svigelj R; Bontempelli G
    Anal Chem; 2017 Oct; 89(19):10454-10460. PubMed ID: 28862426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and measurement of combinatorial screen printed libraries for the electrochemical analysis of liquids.
    Müller A; Brinz T; Simon U
    J Comb Chem; 2009; 11(1):138-42. PubMed ID: 19099500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Soft Sensor Using Laser Processing Techniques: For the Alternative 3D Printing Process.
    Seo M; Hwang S; Hwang T; Yeo J
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31547277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and sensitive aptasensor based on quantum dot-coated silica nanospheres and the gold screen-printed electrode.
    Li Y; Deng L; Deng C; Nie Z; Yang M; Si S
    Talanta; 2012 Sep; 99():637-42. PubMed ID: 22967605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories.
    Zuchowicz NC; Belgodere JA; Liu Y; Semmes I; Monroe WT; Tiersch TR
    Fishes; 2022 Feb; 7(1):. PubMed ID: 36644437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.