BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26998900)

  • 1. Label-free fluorescence detection of microRNA based on target induced adenosine2-coralyne-adenosine2 formation.
    Li JJ; Xi Q; Du WF; Yu RQ; Jiang JH
    Analyst; 2016 Apr; 141(8):2384-7. PubMed ID: 26998900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polyadenosine-coralyne complex as a novel fluorescent probe for the sensitive and selective detection of heparin in plasma.
    Hung SY; Tseng WL
    Biosens Bioelectron; 2014 Jul; 57():186-91. PubMed ID: 24583690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free and sensitive detection assay for terminal deoxynucleotidyl transferase via polyadenosine-coralyne fluorescence enhancement strategy.
    Wang Y; Sun X; Zeng J; Deng M; Li N; Chen Q; Zhu H; Liu F; Xing X
    Anal Biochem; 2019 Feb; 567():85-89. PubMed ID: 30157446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence detection of coralyne and polyadenylation reaction using an oligonucleotide-based fluorogenic probe.
    Lin YH; Tseng WL
    Chem Commun (Camb); 2011 Oct; 47(39):11134-6. PubMed ID: 21897954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ label-free and sensitive detection assay for cell apoptosis via polyadenosine-coralyne fluorescence enhancement strategy.
    Wu C; Wang J; Chen Y; Xing X
    Anal Biochem; 2021 Nov; 632():114329. PubMed ID: 34525387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon.
    Shi YJ; Chen YJ; Hu WP; Chang LS
    Toxins (Basel); 2017 Jan; 9(1):. PubMed ID: 28067855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide.
    Zhang P; Wang Y; Leng F; Xiong ZH; Huang CZ
    Talanta; 2013 Aug; 112():117-22. PubMed ID: 23708546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A room-temperature adenosine-based molecular beacon for highly sensitive detection of nucleic acids.
    Lin YH; Tseng WL
    Chem Commun (Camb); 2012 Jun; 48(50):6262-4. PubMed ID: 22531390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual hairpin-like molecular beacon based on coralyne-adenosine interaction for sensing melamine in dairy products.
    Wang G; Zhu Y; Chen L; Zhang X
    Talanta; 2014 Nov; 129():398-403. PubMed ID: 25127611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free and colorimetric turn-on assay for coralyne based on coralyne-induced formation of peroxidase-mimicking split DNAzyme.
    Hou T; Wang X; Liu X; Liu S; Du Z; Li F
    Analyst; 2013 Sep; 138(17):4728-31. PubMed ID: 23869385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence detection of polyadenylation reaction through the coordination of adenosine₂-coralyne-adenosine₂.
    Lin JH; Tseng WL
    Methods Mol Biol; 2014; 1125():75-9. PubMed ID: 24590781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Beacon-Based Fluorescent Assay for Specific Detection of Oversulfated Chondroitin Sulfate Contaminants in Heparin without Enzyme Treatment.
    Lee CY; Tseng WL
    Anal Chem; 2015; 87(10):5031-5. PubMed ID: 25927411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular recognition of nucleic acids: coralyne binds strongly to poly(A).
    Xing F; Song G; Ren J; Chaires JB; Qu X
    FEBS Lett; 2005 Sep; 579(22):5035-9. PubMed ID: 16125177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine-based molecular beacons as light-up probes for sensing heparin in plasma.
    Kuo CY; Tseng WL
    Chem Commun (Camb); 2013 May; 49(41):4607-9. PubMed ID: 23563586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of isoquinoline alkaloids with an RNA triplex: structural and thermodynamic studies of berberine, palmatine, and coralyne binding to poly(U).poly(A)(*)poly(U).
    Sinha R; Kumar GS
    J Phys Chem B; 2009 Oct; 113(40):13410-20. PubMed ID: 19754095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining DNA-stabilized silver nanocluster synthesis with exonuclease III amplification allows label-free detection of coralyne.
    Lee CY; Lin SW; Wu YH; Hsieh YZ
    Anal Chim Acta; 2018 Dec; 1042():86-92. PubMed ID: 30428992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reusable microRNA sensor based on the electrocatalytic property of heteroduplex-templated copper nanoclusters.
    Wang Z; Si L; Bao J; Dai Z
    Chem Commun (Camb); 2015 Apr; 51(29):6305-7. PubMed ID: 25760653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing biomolecular interactions with dual polarization interferometry: real-time and label-free coralyne detection by use of homoadenine DNA oligonucleotide.
    Wang Y; Wang J; Yang F; Yang X
    Anal Chem; 2012 Jan; 84(2):924-30. PubMed ID: 22148232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA.
    Li Y; Zhang J; Zhao J; Zhao L; Cheng Y; Li Z
    Analyst; 2016 Feb; 141(3):1071-6. PubMed ID: 26688865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of miRNA using a double-strand displacement biosensor with a self-complementary fluorescent reporter.
    Larkey NE; Almlie CK; Tran V; Egan M; Burrows SM
    Anal Chem; 2014 Feb; 86(3):1853-63. PubMed ID: 24417738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.