These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 26999025)
1. Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Montero-AstĂșa M; Ullman DE; Whitfield AE Virology; 2016 Jun; 493():39-51. PubMed ID: 26999025 [TBL] [Abstract][Full Text] [Related]
2. Discovery of Novel Thrips Vector Proteins That Bind to the Viral Attachment Protein of the Plant Bunyavirus Tomato Spotted Wilt Virus. Badillo-Vargas IE; Chen Y; Martin KM; Rotenberg D; Whitfield AE J Virol; 2019 Nov; 93(21):. PubMed ID: 31413126 [TBL] [Abstract][Full Text] [Related]
3. The route of tomato spotted wilt virus inside the thrips body in relation to transmission efficiency. Kritzman A; Gera A; Raccah B; van Lent JW; Peters D Arch Virol; 2002 Nov; 147(11):2143-56. PubMed ID: 12417949 [TBL] [Abstract][Full Text] [Related]
4. Progression of Watermelon Bud Necrosis Virus Infection in Its Vector, Ghosh A; Priti ; Mandal B; Dietzgen RG Cells; 2021 Feb; 10(2):. PubMed ID: 33672941 [TBL] [Abstract][Full Text] [Related]
5. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Schneweis DJ; Whitfield AE; Rotenberg D Virology; 2017 Jan; 500():226-237. PubMed ID: 27835811 [TBL] [Abstract][Full Text] [Related]
6. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Whitfield AE; Kumar NK; Rotenberg D; Ullman DE; Wyman EA; Zietlow C; Willis DK; German TL Phytopathology; 2008 Jan; 98(1):45-50. PubMed ID: 18943237 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) Via the Host Plant Nutrients to Enhance Its Transmission and Spread. Shalileh S; Ogada PA; Moualeu DP; Poehling HM Environ Entomol; 2016 Oct; 45(5):1235-1242. PubMed ID: 27566527 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to tomato spotted wilt virus infection. Badillo-Vargas IE; Rotenberg D; Schneweis DJ; Hiromasa Y; Tomich JM; Whitfield AE J Virol; 2012 Aug; 86(16):8793-809. PubMed ID: 22696645 [TBL] [Abstract][Full Text] [Related]
9. Tissue tropism related to vector competence of Frankliniella occidentalis for tomato spotted wilt tospovirus. Nagata T; Inoue-Nagata AK; Smid HM; Goldbach R; Peters D J Gen Virol; 1999 Feb; 80 ( Pt 2)():507-515. PubMed ID: 10073714 [TBL] [Abstract][Full Text] [Related]
10. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. Margaria P; Bosco L; Vallino M; Ciuffo M; Mautino GC; Tavella L; Turina M J Virol; 2014 May; 88(10):5788-802. PubMed ID: 24623427 [TBL] [Abstract][Full Text] [Related]
11. Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. Rajarapu SP; Ben-Mahmoud S; Benoit JB; Ullman DE; Whitfield AE; Rotenberg D Insect Biochem Mol Biol; 2022 Oct; 149():103843. PubMed ID: 36113709 [TBL] [Abstract][Full Text] [Related]
12. Winter weeds as inoculum sources of tomato spotted wilt virus and as reservoirs for its vector, Frankliniella fusca (Thysanoptera: Thripidae) in farmscapes of Georgia. Srinivasan R; Riley D; Diffie S; Shrestha A; Culbreath A Environ Entomol; 2014 Apr; 43(2):410-20. PubMed ID: 24612539 [TBL] [Abstract][Full Text] [Related]
13. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants. Shrestha A; Sundaraj S; Culbreath AK; Riley DG; Abney MR; Srinivasan R Environ Entomol; 2015 Feb; 44(1):136-43. PubMed ID: 26308816 [TBL] [Abstract][Full Text] [Related]
14. CONTROL OF VIRAL DISEASES TRANSMITTED IN A PERSISTENT MANNER BY THRIPS IN PEPPER (TOMATO SPOTTED WILT VIRUS). Fanigliulo A; Viggiano A; Gualco A; Crescenzi A Commun Agric Appl Biol Sci; 2014; 79(3):433-7. PubMed ID: 26080477 [TBL] [Abstract][Full Text] [Related]
15. The Plant Virus Tomato Spotted Wilt Orthotospovirus Benefits Its Vector Zhang Z; Zhang J; Li X; Zhang J; Wang Y; Lu Y Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833941 [TBL] [Abstract][Full Text] [Related]
16. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission. Rotenberg D; Krishna Kumar NK; Ullman DE; Montero-AstĂșa M; Willis DK; German TL; Whitfield AE Phytopathology; 2009 Apr; 99(4):404-10. PubMed ID: 19271982 [TBL] [Abstract][Full Text] [Related]
17. Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection. Han J; Rotenberg D BMC Genomics; 2021 Nov; 22(1):810. PubMed ID: 34758725 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Frankliniella fusca and Frankliniella occidentalis (Thysanoptera: Thripidae) as Vectors for a Peanut Strain of Tomato Spotted Wilt Orthotospovirus. Arthurs SP; Heinz KM; Mitchell FL Environ Entomol; 2018 Jun; 47(3):623-628. PubMed ID: 29596611 [TBL] [Abstract][Full Text] [Related]
19. Second generation peanut genotypes resistant to thrips-transmitted tomato spotted wilt virus exhibit tolerance rather than true resistance and differentially affect thrips fitness. Shrestha A; Srinivasan R; Sundaraj S; Culbreath AK; Riley DG J Econ Entomol; 2013 Apr; 106(2):587-96. PubMed ID: 23786043 [TBL] [Abstract][Full Text] [Related]
20. Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus. Nagata T; Inoue-Nagata AK; van Lent J; Goldbach R; Peters D J Gen Virol; 2002 Mar; 83(Pt 3):663-671. PubMed ID: 11842261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]