These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26999060)

  • 1. CsI as Multifunctional Redox Mediator for Enhanced Li-Air Batteries.
    Lee CK; Park YJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8561-7. PubMed ID: 26999060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyimide-coated carbon electrodes combined with redox mediators for superior Li-O
    Yoon SH; Park YJ
    Sci Rep; 2017 Feb; 7():42617. PubMed ID: 28198419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.
    Liang Z; Lu YC
    J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Br
    Xin X; Ito K; Kubo Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25976-25984. PubMed ID: 28714666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LiF Protective Layer on a Li Anode: Toward Improving the Performance of Li-O
    Yoo E; Zhou H
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18490-18495. PubMed ID: 32212676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.
    Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA
    Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells.
    Sharon D; Hirsberg D; Afri M; Chesneau F; Lavi R; Frimer AA; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16590-600. PubMed ID: 26158598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control.
    Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L
    Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries.
    Bergner BJ; Schürmann A; Peppler K; Garsuch A; Janek J
    J Am Chem Soc; 2014 Oct; 136(42):15054-64. PubMed ID: 25255228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic oxygen reduction of dual redox catalysts boosting the power of lithium-air battery.
    Zhu YG; Goh FWT; Yan R; Wu S; Adams S; Wang Q
    Phys Chem Chem Phys; 2018 Nov; 20(44):27930-27936. PubMed ID: 30379163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.
    Guo Z; Li C; Liu J; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7505-7509. PubMed ID: 28524448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst.
    Lim HD; Song H; Kim J; Gwon H; Bae Y; Park KY; Hong J; Kim H; Kim T; Kim YH; Lepró X; Ovalle-Robles R; Baughman RH; Kang K
    Angew Chem Int Ed Engl; 2014 Apr; 53(15):3926-31. PubMed ID: 24596170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium-Air Batteries Catalyzed by Gold/Manganese-Dioxide.
    Wang G; Huang L; Liu S; Xie J; Zhang S; Zhu P; Cao G; Zhao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23876-84. PubMed ID: 26466174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium-Air Batteries with Hybrid Electrolytes.
    He P; Zhang T; Jiang J; Zhou H
    J Phys Chem Lett; 2016 Apr; 7(7):1267-80. PubMed ID: 26977713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries.
    García JM; Horn HW; Rice JE
    J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.