These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26999284)

  • 1. Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes.
    Uda T; Yoshida M; Ishii A; Kato YK
    Nano Lett; 2016 Apr; 16(4):2278-82. PubMed ID: 26999284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton dissociation and stark effect in the carbon nanotube photocurrent spectrum.
    Mohite AD; Gopinath P; Shah HM; Alphenaar BW
    Nano Lett; 2008 Jan; 8(1):142-6. PubMed ID: 18047383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-enhanced photocurrent spectroscopy of excitonic states in single-wall carbon nanotubes.
    Mohite A; Lin JT; Sumanasekera G; Alphenaar BW
    Nano Lett; 2006 Jul; 6(7):1369-73. PubMed ID: 16834413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Plane Electric-Field-Induced Orbital Hybridization of Excitonic States in Monolayer WSe_{2}.
    Zhu B; Xiao K; Yang S; Watanabe K; Taniguchi T; Cui X
    Phys Rev Lett; 2023 Jul; 131(3):036901. PubMed ID: 37540882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-polarized excitons in carbon nanotubes.
    Kilina S; Tretiak S; Doorn SK; Luo Z; Papadimitrakopoulos F; Piryatinski A; Saxena A; Bishop AR
    Proc Natl Acad Sci U S A; 2008 May; 105(19):6797-802. PubMed ID: 18463293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited excitonic states in single-walled carbon nanotubes.
    Lefebvre J; Finnie P
    Nano Lett; 2008 Jul; 8(7):1890-5. PubMed ID: 18505302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes.
    Ma X; Adamska L; Yamaguchi H; Yalcin SE; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10782-9. PubMed ID: 25265272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy.
    Nagatsu K; Chiashi S; Konabe S; Homma Y
    Phys Rev Lett; 2010 Oct; 105(15):157403. PubMed ID: 21230938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting.
    Srivastava A; Htoon H; Klimov VI; Kono J
    Phys Rev Lett; 2008 Aug; 101(8):087402. PubMed ID: 18764659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.
    Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G
    Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
    Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S
    Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive Signatures of the Spin- and Momentum-Forbidden Dark Exciton States in the Photoluminescence of Strained WSe
    Peng GH; Lo PY; Li WH; Huang YC; Chen YH; Lee CH; Yang CK; Cheng SJ
    Nano Lett; 2019 Apr; 19(4):2299-2312. PubMed ID: 30860847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous exciton dissociation in carbon nanotubes.
    Kumamoto Y; Yoshida M; Ishii A; Yokoyama A; Shimada T; Kato YK
    Phys Rev Lett; 2014 Mar; 112(11):117401. PubMed ID: 24702413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe
    Zhang M; Fu J; Dias AC; Qu F
    J Phys Condens Matter; 2018 Jul; 30(26):265502. PubMed ID: 29775182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.