These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26999284)

  • 21. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy.
    Matsunaga R; Matsuda K; Kanemitsu Y
    Phys Rev Lett; 2011 Jan; 106(3):037404. PubMed ID: 21405298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoinduced Dynamics in Carbon Nanotube Aggregates Steered by Dark Excitons.
    Postupna O; Jaeger HM; Prezhdo OV
    J Phys Chem Lett; 2014 Nov; 5(21):3872-7. PubMed ID: 26278762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic and optical properties of finite carbon nanotubes in an electric field.
    Chen RB; Lee CH; Chang CP; Lin MF
    Nanotechnology; 2007 Feb; 18(7):075704. PubMed ID: 21730512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature.
    Raynaud C; Claude T; Borel A; Amara MR; Graf A; Zaumseil J; Lauret JS; Chassagneux Y; Voisin C
    Nano Lett; 2019 Oct; 19(10):7210-7216. PubMed ID: 31487461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy.
    Torrens ON; Zheng M; Kikkawa JM
    Phys Rev Lett; 2008 Oct; 101(15):157401. PubMed ID: 18999637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast terahertz probes of interacting dark excitons in chirality-specific semiconducting single-walled carbon nanotubes.
    Luo L; Chatzakis I; Patz A; Wang J
    Phys Rev Lett; 2015 Mar; 114(10):107402. PubMed ID: 25815965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects.
    Piao Y; Meany B; Powell LR; Valley N; Kwon H; Schatz GC; Wang Y
    Nat Chem; 2013 Oct; 5(10):840-5. PubMed ID: 24056340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes.
    Park CH; Spataru CD; Louie SG
    Phys Rev Lett; 2006 Mar; 96(12):126105. PubMed ID: 16605933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the ultrafast dynamics of excitons in single semiconducting carbon nanotubes.
    Birkmeier K; Hertel T; Hartschuh A
    Nat Commun; 2022 Oct; 13(1):6290. PubMed ID: 36271091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dark excitons and tunable optical gap in graphene nanodots.
    Zhang Y; Sheng W; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(34):23131-23137. PubMed ID: 28820198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes.
    Lefebvre J; Finnie P
    Phys Rev Lett; 2007 Apr; 98(16):167406. PubMed ID: 17501463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct observation of dark excitons in micelle-wrapped single-wall carbon nanotubes.
    Kishida H; Nagasawa Y; Imamura S; Nakamura A
    Phys Rev Lett; 2008 Mar; 100(9):097401. PubMed ID: 18352747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes.
    Perebeinos V; Avouris P
    Nano Lett; 2007 Mar; 7(3):609-13. PubMed ID: 17261074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes.
    Dukovic G; Wang F; Song D; Sfeir MY; Heinz TF; Brus LE
    Nano Lett; 2005 Nov; 5(11):2314-8. PubMed ID: 16277475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of forbidden exciton transitions mediated by Coulomb interactions in photoexcited semiconductor quantum wells.
    Rice WD; Kono J; Zybell S; Winnerl S; Bhattacharyya J; Schneider H; Helm M; Ewers B; Chernikov A; Koch M; Chatterjee S; Khitrova G; Gibbs HM; Schneebeli L; Breddermann B; Kira M; Koch SW
    Phys Rev Lett; 2013 Mar; 110(13):137404. PubMed ID: 23581371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: The dark excitonic bottleneck.
    Seferyan HY; Nasr MB; Senekerimyan V; Zadoyan R; Collins P; Apkarian VA
    Nano Lett; 2006 Aug; 6(8):1757-60. PubMed ID: 16895369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes.
    Park J; Deria P; Olivier JH; Therien MJ
    Nano Lett; 2014 Feb; 14(2):504-11. PubMed ID: 24329134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.