BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1796 related articles for article (PubMed ID: 26999521)

  • 1. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction.
    Park HJ; Lee OJ; Lee MC; Moon BM; Ju HW; Lee Jm; Kim JH; Kim DW; Park CH
    Int J Biol Macromol; 2015; 78():215-23. PubMed ID: 25849999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts.
    Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L
    Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.
    Pina S; Canadas RF; Jiménez G; Perán M; Marchal JA; Reis RL; Oliveira JM
    Cells Tissues Organs; 2017; 204(3-4):150-163. PubMed ID: 28803246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.
    Sangkert S; Meesane J; Kamonmattayakul S; Chai WL
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid scaffolds based on PLGA and silk for bone tissue engineering.
    Sheikh FA; Ju HW; Moon BM; Lee OJ; Kim JH; Park HJ; Kim DW; Kim DK; Jang JE; Khang G; Park CH
    J Tissue Eng Regen Med; 2016 Mar; 10(3):209-21. PubMed ID: 25628059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties.
    Islam MM; Khan MA; Rahman MM
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration.
    Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A
    Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The incorporation of β-tricalcium phosphate nanoparticles within silk fibroin composite scaffolds for enhanced bone regeneration: An in vitro and in vivo study.
    Jing T; Yi Liu ; Xu L; Chen C; Liu F
    J Biomater Appl; 2022 Apr; 36(9):1567-1578. PubMed ID: 35135370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.
    Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y
    Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 90.