BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1173 related articles for article (PubMed ID: 26999639)

  • 1. Control of Respiratory Drive and Effort in Extracorporeal Membrane Oxygenation Patients Recovering from Severe Acute Respiratory Distress Syndrome.
    Mauri T; Grasselli G; Suriano G; Eronia N; Spadaro S; Turrini C; Patroniti N; Bellani G; Pesenti A
    Anesthesiology; 2016 Jul; 125(1):159-67. PubMed ID: 26999639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient-Ventilator Interaction.
    Doorduin J; Sinderby CA; Beck J; van der Hoeven JG; Heunks LM
    Anesthesiology; 2015 Jul; 123(1):181-90. PubMed ID: 25955983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Spontaneous Breathing Effort during Extracorporeal Membrane Oxygenation in a Porcine Model of Severe Acute Respiratory Distress Syndrome.
    Dubo S; Oviedo V; Garcia A; Alegría L; García P; Valenzuela ED; Damiani LF; Araos J; Medina T; Bachmann MC; Basoalto R; Bravo S; Soto D; Cruces P; Guzmán P; Retamal J; Cornejo R; Bugedo G; Brebi P; Bruhn A
    Anesthesiology; 2020 Nov; 133(5):1106-1117. PubMed ID: 32898217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracorporeal CO2 removal.
    Terragni PP; Birocco A; Faggiano C; Ranieri VM
    Contrib Nephrol; 2010; 165():185-196. PubMed ID: 20427969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety and Efficacy of Combined Extracorporeal CO2 Removal and Renal Replacement Therapy in Patients With Acute Respiratory Distress Syndrome and Acute Kidney Injury: The Pulmonary and Renal Support in Acute Respiratory Distress Syndrome Study.
    Allardet-Servent J; Castanier M; Signouret T; Soundaravelou R; Lepidi A; Seghboyan JM
    Crit Care Med; 2015 Dec; 43(12):2570-81. PubMed ID: 26488219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous Breathing during Extracorporeal Membrane Oxygenation in Acute Respiratory Failure.
    Crotti S; Bottino N; Ruggeri GM; Spinelli E; Tubiolo D; Lissoni A; Protti A; Gattinoni L
    Anesthesiology; 2017 Apr; 126(4):678-687. PubMed ID: 28212205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The level of partial pressure of carbon dioxide affects respiratory effort in COVID-19 patients undergoing pressure support ventilation with extracorporeal membrane oxygenation.
    Zhou Y; Wang X; Du W; He H; Wang X; Cui N; Long Y
    BMC Anesthesiol; 2024 Jan; 24(1):23. PubMed ID: 38216876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of Respiratory Drive and Lung Stress by Level of Support Pressure and ECMO Sweep Gas Flow in Patients With Severe COVID-19-Associated Acute Respiratory Distress Syndrome: an Exploratory Retrospective Analysis.
    Jung C; Gillmann HJ; Stueber T
    J Cardiothorac Vasc Anesth; 2024 Jan; 38(1):221-229. PubMed ID: 38197786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-Protective Ventilation Reduces Biotrauma in Patients on Venovenous Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome.
    Rozencwajg S; Guihot A; Franchineau G; Lescroat M; Bréchot N; Hékimian G; Lebreton G; Autran B; Luyt CE; Combes A; Schmidt M
    Crit Care Med; 2019 Nov; 47(11):1505-1512. PubMed ID: 31385880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ultraprotective ventilation, extracorporeal carbon dioxide removal, and spontaneous breathing on lung morphofunction and inflammation in experimental severe acute respiratory distress syndrome.
    Güldner A; Kiss T; Bluth T; Uhlig C; Braune A; Carvalho N; Quast T; Rentzsch I; Huhle R; Spieth P; Richter T; Saddy F; Rocco PR; Kasper M; Koch T; Pelosi P; de Abreu MG
    Anesthesiology; 2015 Mar; 122(3):631-46. PubMed ID: 25371037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bedside Contribution of Electrical Impedance Tomography to Setting Positive End-Expiratory Pressure for Extracorporeal Membrane Oxygenation-treated Patients with Severe Acute Respiratory Distress Syndrome.
    Franchineau G; Bréchot N; Lebreton G; Hekimian G; Nieszkowska A; Trouillet JL; Leprince P; Chastre J; Luyt CE; Combes A; Schmidt M
    Am J Respir Crit Care Med; 2017 Aug; 196(4):447-457. PubMed ID: 28103448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pendelluft in hypoxemic patients resuming spontaneous breathing: proportional modes versus pressure support ventilation.
    Arellano DH; Brito R; Morais CCA; Ruiz-Rudolph P; Gajardo AIJ; Guiñez DV; Lazo MT; Ramirez I; Rojas VA; Cerda MA; Medel JN; Illanes V; Estuardo NR; Bruhn AR; Brochard LJ; Amato MBP; Cornejo RA
    Ann Intensive Care; 2023 Dec; 13(1):131. PubMed ID: 38117367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure support ventilation in patients with acute lung injury.
    Cereda M; Foti G; Marcora B; Gili M; Giacomini M; Sparacino ME; Pesenti A
    Crit Care Med; 2000 May; 28(5):1269-75. PubMed ID: 10834664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial.
    Ferreira JC; Diniz-Silva F; Moriya HT; Alencar AM; Amato MBP; Carvalho CRR
    BMC Pulm Med; 2017 Nov; 17(1):139. PubMed ID: 29115949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support.
    Mauri T; Bellani G; Confalonieri A; Tagliabue P; Turella M; Coppadoro A; Citerio G; Patroniti N; Pesenti A
    Crit Care Med; 2013 Jul; 41(7):1664-73. PubMed ID: 23507723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant reduction in minute ventilation and peak inspiratory pressures with arteriovenous CO2 removal during severe respiratory failure.
    Tao W; Brunston RL; Bidani A; Pirtle P; Dy J; Cardenas VJ; Traber DL; Zwischenberger JB
    Crit Care Med; 1997 Apr; 25(4):689-95. PubMed ID: 9142037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison Between Neurally Adjusted Ventilatory Assist and Pressure Support Ventilation Levels in Terms of Respiratory Effort.
    Carteaux G; Córdoba-Izquierdo A; Lyazidi A; Heunks L; Thille AW; Brochard L
    Crit Care Med; 2016 Mar; 44(3):503-11. PubMed ID: 26540399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologic effects of noninvasive ventilation during acute lung injury.
    L'Her E; Deye N; Lellouche F; Taille S; Demoule A; Fraticelli A; Mancebo J; Brochard L
    Am J Respir Crit Care Med; 2005 Nov; 172(9):1112-8. PubMed ID: 16081548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Severe diaphragmatic dysfunction with preserved activity of accessory respiratory muscles in a critically ill child: a case report of failure of neurally adjusted ventilatory assist (NAVA) and successful support with pressure support ventilation (PSV).
    Langer T; Baio S; Chidini G; Marchesi T; Grasselli G; Pesenti A; Calderini E
    BMC Pediatr; 2019 May; 19(1):155. PubMed ID: 31101098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation (ECMO).
    López Sanchez M
    Med Intensiva; 2017 Nov; 41(8):491-496. PubMed ID: 28188062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.