BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27000050)

  • 1. microRNA-dependent gene regulatory networks in maize leaf senescence.
    Wu X; Ding D; Shi C; Xue Y; Zhang Z; Tang G; Tang J
    BMC Plant Biol; 2016 Mar; 16():73. PubMed ID: 27000050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress.
    Aydinoglu F
    Planta; 2020 Jan; 251(2):38. PubMed ID: 31907623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize.
    Zhao Y; Xu Z; Mo Q; Zou C; Li W; Xu Y; Xie C
    Ann Bot; 2013 Aug; 112(3):633-42. PubMed ID: 23788746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the Regulatory Network of Leaf Premature Senescence in Maize (
    Chai M; Guo Z; Shi X; Li Y; Tang J; Zhang Z
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31752425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA transcriptomic analysis of the sixth leaf of maize (Zea mays L.) revealed a regulatory mechanism of jointing stage heterosis.
    Hou G; Dong Y; Zhu F; Zhao Q; Li T; Dou D; Ma X; Wu L; Ku L; Chen Y
    BMC Plant Biol; 2020 Nov; 20(1):541. PubMed ID: 33256592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313.
    Aydinoglu F; Lucas SJ
    Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional analyses of natural leaf senescence in maize.
    Zhang WY; Xu YC; Li WL; Yang L; Yue X; Zhang XS; Zhao XY
    PLoS One; 2014; 9(12):e115617. PubMed ID: 25532107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing.
    Liu H; Qin C; Chen Z; Zuo T; Yang X; Zhou H; Xu M; Cao S; Shen Y; Lin H; He X; Zhang Y; Li L; Ding H; Lübberstedt T; Zhang Z; Pan G
    BMC Genomics; 2014 Jan; 15():25. PubMed ID: 24422852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Identification of known microRNAs in root and leaf of maize by deep sequencing].
    Chen J; Lin HJ; Pan GT; Zhang ZM; Zhang B; Shen YO; Qin C; Zhang Q; Zhao MJ
    Yi Chuan; 2010 Nov; 32(11):1175-86. PubMed ID: 21513170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.
    Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y
    PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRNA alterations are important mechanism in maize adaptations to low-phosphate environments.
    Li Z; Zhang X; Liu X; Zhao Y; Wang B; Zhang J
    Plant Sci; 2016 Nov; 252():103-117. PubMed ID: 27717445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize.
    Nie Z; Ren Z; Wang L; Su S; Wei X; Zhang X; Wu L; Liu D; Tang H; Liu H; Zhang S; Gao S
    Physiol Plant; 2016 Jun; 157(2):161-74. PubMed ID: 26572939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice.
    Xu X; Bai H; Liu C; Chen E; Chen Q; Zhuang J; Shen B
    PLoS One; 2014; 9(12):e114313. PubMed ID: 25479006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination.
    Wu L; Wang S; Tian L; Wu L; Li M; Zhang J; Li P; Zhang W; Chen Y
    J Proteomics; 2018 Apr; 177():75-87. PubMed ID: 29454112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots.
    Xu Z; Zhong S; Li X; Li W; Rothstein SJ; Zhang S; Bi Y; Xie C
    PLoS One; 2011; 6(11):e28009. PubMed ID: 22132192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply.
    Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y
    Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Characterization of microRNAs during Maize Grain Filling.
    Jin X; Fu Z; Lv P; Peng Q; Ding D; Li W; Tang J
    PLoS One; 2015; 10(5):e0125800. PubMed ID: 25951054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and characterization of long non-coding RNAs involved in flag leaf senescence of rice.
    Huang X; Zhang H; Wang Q; Guo R; Wei L; Song H; Kuang W; Liao J; Huang Y; Wang Z
    Plant Mol Biol; 2021 Apr; 105(6):655-684. PubMed ID: 33569692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.