BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 27000553)

  • 1. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface.
    Shah FA; Snis A; Matic A; Thomsen P; Palmquist A
    Acta Biomater; 2016 Jan; 30():357-367. PubMed ID: 26577985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osseointegration of 3D printed microalloyed CoCr implants-Addition of 0.04% Zr to CoCr does not alter bone material properties.
    Shah FA; Jergéus E; Chiba A; Palmquist A
    J Biomed Mater Res A; 2018 Jun; 106(6):1655-1663. PubMed ID: 29427531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep.
    Palmquist A; Snis A; Emanuelsson L; Browne M; Thomsen P
    J Biomater Appl; 2013 May; 27(8):1003-16. PubMed ID: 22207608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants.
    Palmquist A; Jolic M; Hryha E; Shah FA
    Acta Biomater; 2023 Jan; 156():125-145. PubMed ID: 35675890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry.
    Palmquist A; Shah FA; Emanuelsson L; Omar O; Suska F
    Micron; 2017 Mar; 94():1-8. PubMed ID: 27960108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting.
    Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A
    J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive glass microspheres as osteopromotive inlays in macrotextured surfaces of Ti and CoCr alloy bone implants: trapezoidal surface grooves without inlay most efficient in resisting torsional forces.
    Keränen P; Moritz N; Alm JJ; Ylänen H; Kommonen B; Aro HT
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1483-91. PubMed ID: 21783158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting.
    Heinl P; Müller L; Körner C; Singer RF; Müller FA
    Acta Biomater; 2008 Sep; 4(5):1536-44. PubMed ID: 18467197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model.
    Jinno T; Goldberg VM; Davy D; Stevenson S
    J Biomed Mater Res; 1998 Oct; 42(1):20-9. PubMed ID: 9740003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants.
    Moiduddin K
    Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).
    Parthasarathy J; Starly B; Raman S; Christensen A
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
    Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.
    Hara D; Nakashima Y; Sato T; Hirata M; Kanazawa M; Kohno Y; Yoshimoto K; Yoshihara Y; Nakamura A; Nakao Y; Iwamoto Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1047-1052. PubMed ID: 26652463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure.
    Cheong VS; Fromme P; Coathup MJ; Mumith A; Blunn GW
    Ann Biomed Eng; 2020 Jan; 48(1):502-514. PubMed ID: 31549330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures.
    Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.