These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27000955)

  • 1. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.
    Tatarinov F; Rotenberg E; Maseyk K; Ogée J; Klein T; Yakir D
    New Phytol; 2016 Apr; 210(2):485-96. PubMed ID: 27000955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests.
    Arain MA; Xu B; Brodeur JJ; Khomik M; Peichl M; Beamesderfer E; Restrepo-Couple N; Thorne R
    Ecol Process; 2022; 11(1):7. PubMed ID: 35127311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and phenological adjustments in water and carbon fluxes of Aleppo pine forests under contrasting climates in the Eastern Mediterranean.
    Markos N; Preisler Y; Radoglou K; Rotenberg E; Yakir D
    Tree Physiol; 2024 Feb; 44(1):. PubMed ID: 37788052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variability of forest sensitivity to heat and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems.
    Xu B; Arain MA; Black TA; Law BE; Pastorello GZ; Chu H
    Glob Chang Biol; 2020 Feb; 26(2):901-918. PubMed ID: 31529736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Component carbon fluxes and their contribution to ecosystem carbon exchange in a pine forest: an assessment based on eddy covariance measurements and an integrated model.
    Wang KY; Kellomäki S; Zha TS; Peltola H
    Tree Physiol; 2004 Jan; 24(1):19-34. PubMed ID: 14652211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought.
    Maseyk K; Lin T; Cochavi A; Schwartz A; Yakir D
    Tree Physiol; 2019 Oct; 39(10):1767-1782. PubMed ID: 31274163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis.
    Stoy PC; Katul GG; Siqueira MB; Juang JY; McCarthy HR; Kim HS; Oishi AC; Oren R
    Tree Physiol; 2005 Jul; 25(7):887-902. PubMed ID: 15870056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth.
    Moreaux V; Lamaud E; Bosc A; Bonnefond JM; Medlyn BE; Loustau D
    Tree Physiol; 2011 Sep; 31(9):903-21. PubMed ID: 21724584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.
    Novick KA; Oishi AC; Ward EJ; Siqueira MB; Juang JY; Stoy PC
    Glob Chang Biol; 2015 Feb; 21(2):827-42. PubMed ID: 25168968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA.
    Wharton S; Schroeder M; Bible K; Falk M; Paw U KT
    Tree Physiol; 2009 Aug; 29(8):959-74. PubMed ID: 19502614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transpiration drivers of high-elevation five-needle pines (Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American Great Basin.
    Liu X; Biondi F
    Sci Total Environ; 2020 Oct; 739():139861. PubMed ID: 32544678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
    Irvine J; Law BE; Anthoni PM; Meinzer FC
    Tree Physiol; 2002 Feb; 22(2-3):189-96. PubMed ID: 11830415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term thinning effects on tree growth, drought response and water use efficiency at two Aleppo pine plantations in Spain.
    Manrique-Alba À; Beguería S; Molina AJ; González-Sanchis M; Tomàs-Burguera M; Del Campo AD; Colangelo M; Camarero JJ
    Sci Total Environ; 2020 Aug; 728():138536. PubMed ID: 32339833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-wildfire effects on carbon and water vapour dynamics in a Spanish black pine forest.
    Dadi T; Rubio E; Martínez-García E; López-Serrano FR; Andrés-Abellán M; García-Morote FA; De las Heras J
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):4851-62. PubMed ID: 25432426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer.
    Law BE; Goldstein AH; Anthoni PM; Unsworth MH; Panek JA; Bauer MR; Fracheboud JM; Hultman N
    Tree Physiol; 2001 Mar; 21(5):299-308. PubMed ID: 11262921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus halepensis forests.
    Manrique-Alba À; Ruiz-Yanetti S; Moutahir H; Novak K; De Luis M; Bellot J
    Sci Total Environ; 2017 Jan; 574():982-990. PubMed ID: 27668850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf area distribution and radiative transfer in open-canopy forests: implications for mass and energy exchange.
    Law BE; Cescatti A; Baldocchi DD
    Tree Physiol; 2001 Aug; 21(12-13):777-87. PubMed ID: 11498325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after wildfire.
    Moya D; González-De Vega S; Lozano E; García-Orenes F; Mataix-Solera J; Lucas-Borja ME; de Las Heras J
    J Environ Manage; 2019 Apr; 235():250-256. PubMed ID: 30684810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing model performance via the most limiting environmental driver in two differently stressed pine stands.
    Nadal-Sala D; Grote R; Birami B; Lintunen A; Mammarella I; Preisler Y; Rotenberg E; Salmon Y; Tatarinov F; Yakir D; Ruehr NK
    Ecol Appl; 2021 Jun; 31(4):e02312. PubMed ID: 33630380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-drought Resilience After Forest Die-Off: Shifts in Regeneration, Composition, Growth and Productivity.
    Gazol A; Camarero JJ; Sangüesa-Barreda G; Vicente-Serrano SM
    Front Plant Sci; 2018; 9():1546. PubMed ID: 30410500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.