BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 27001219)

  • 1. Textile properties of synthetic prolapse mesh in response to uniaxial loading.
    Barone WR; Moalli PA; Abramowitch SD
    Am J Obstet Gynecol; 2016 Sep; 215(3):326.e1-9. PubMed ID: 27001219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.
    Ulrich D; Edwards SL; Alexander DLJ; Rosamilia A; Werkmeister JA; Gargett CE; Letouzey V
    Am J Obstet Gynecol; 2016 Feb; 214(2):260.e1-260.e8. PubMed ID: 26348376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation of Transvaginal Mesh in Response to Multiaxial Loading.
    Barone WR; Knight KM; Moalli PA; Abramowitch SD
    J Biomech Eng; 2019 Feb; 141(2):0210011-8. PubMed ID: 30347035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventing Mesh Pore Collapse by Designing Mesh Pores With Auxetic Geometries: A Comprehensive Evaluation Via Computational Modeling.
    Knight KM; Moalli PA; Abramowitch SD
    J Biomech Eng; 2018 May; 140(5):0510051-8. PubMed ID: 29350744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products.
    Feola A; Barone W; Moalli P; Abramowitch S
    Int Urogynecol J; 2013 Apr; 24(4):559-64. PubMed ID: 22885725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque.
    Brown BN; Mani D; Nolfi AL; Liang R; Abramowitch SD; Moalli PA
    Am J Obstet Gynecol; 2015 Nov; 213(5):668.e1-10. PubMed ID: 26259906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesh deformation: A mechanism underlying polypropylene prolapse mesh complications in vivo.
    Knight KM; King GE; Palcsey SL; Suda A; Liang R; Moalli PA
    Acta Biomater; 2022 Aug; 148():323-335. PubMed ID: 35671876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore size and pore shape--but not mesh density--alter the mechanical strength of tissue ingrowth and host tissue response to synthetic mesh materials in a porcine model of ventral hernia repair.
    Lake SP; Ray S; Zihni AM; Thompson DM; Gluckstein J; Deeken CR
    J Mech Behav Biomed Mater; 2015 Feb; 42():186-97. PubMed ID: 25486631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of prolapse meshes on the metabolism of vaginal extracellular matrix in rhesus macaque.
    Liang R; Zong W; Palcsey S; Abramowitch S; Moalli PA
    Am J Obstet Gynecol; 2015 Feb; 212(2):174.e1-7. PubMed ID: 25128444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair.
    Todros S; Pavan PG; Natali AN
    J Mech Behav Biomed Mater; 2015 Mar; 55():271-285. PubMed ID: 26615384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of prolapse mesh on vaginal smooth muscle structure and function.
    Jallah Z; Liang R; Feola A; Barone W; Palcsey S; Abramowitch SD; Yoshimura N; Moalli P
    BJOG; 2016 Jun; 123(7):1076-85. PubMed ID: 26301457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofibrous biomimetic mesh can be used for pelvic reconstructive surgery: A randomized study.
    Ding J; Deng M; Song XC; Chen C; Lai KL; Wang GS; Yuan YY; Xu T; Zhu L
    J Mech Behav Biomed Mater; 2016 Aug; 61():26-35. PubMed ID: 26820994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying mesh textile and effective porosities: A straightforward image analysis procedure for morphological analysis of surgical meshes.
    Giacalone V; Civilini V; Audenino AL; Terzini M
    Comput Methods Programs Biomed; 2023 Dec; 242():107850. PubMed ID: 37865005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Varying degrees of nonlinear mechanical behavior arising from geometric differences of urogynecological meshes.
    Feola A; Pal S; Moalli P; Maiti S; Abramowitch S
    J Biomech; 2014 Aug; 47(11):2584-9. PubMed ID: 25011619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of better tolerated prosthetic materials: applications in gynecological surgery].
    Debodinance P; Delporte P; Engrand JB; Boulogne M
    J Gynecol Obstet Biol Reprod (Paris); 2002 Oct; 31(6):527-40. PubMed ID: 12407323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensile properties of commonly used prolapse meshes.
    Jones KA; Feola A; Meyn L; Abramowitch SD; Moalli PA
    Int Urogynecol J Pelvic Floor Dysfunct; 2009 Jul; 20(7):847-53. PubMed ID: 19495548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complications Reported to the Food and Drug Administration: A Cross-sectional Comparison of Urogynecologic Meshes.
    Artsen AM; Sassani JC; Moalli PA; Bradley MS
    Female Pelvic Med Reconstr Surg; 2022 Jul; 28(7):452-460. PubMed ID: 35536679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the basic science of prolapse meshes.
    Liang R; Knight K; Abramowitch S; Moalli PA
    Curr Opin Obstet Gynecol; 2016 Oct; 28(5):413-9. PubMed ID: 27517341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo documentation of shape and position changes of MRI-visible mesh placed in rectovaginal septum.
    Iva U; Nikhil S; Geertje C; Alice T; Rynkevic R; Lucie H; Andrew F; Jan D
    J Mech Behav Biomed Mater; 2017 Nov; 75():379-389. PubMed ID: 28803112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of boundary conditions on surface curvature of polypropylene mesh in response to uniaxial loading.
    Barone WR; Amini R; Maiti S; Moalli PA; Abramowitch SD
    J Biomech; 2015 Jun; 48(9):1566-74. PubMed ID: 25843260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.