These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 27001370)
1. An in-situ gas chromatography investigation into the suppression of oxygen gas evolution by coated amorphous cobalt-phosphate nanoparticles on oxide electrode. Gim J; Song J; Kim S; Jo J; Kim S; Yoon J; Kim D; Hong SG; Park JH; Mathew V; Han J; Song SJ; Kim J Sci Rep; 2016 Mar; 6():23394. PubMed ID: 27001370 [TBL] [Abstract][Full Text] [Related]
2. Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. Hatsukade T; Schiele A; Hartmann P; Brezesinski T; Janek J ACS Appl Mater Interfaces; 2018 Nov; 10(45):38892-38899. PubMed ID: 30335934 [TBL] [Abstract][Full Text] [Related]
3. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer. Lee YS; Shin WK; Kannan AG; Koo SM; Kim DW ACS Appl Mater Interfaces; 2015 Jul; 7(25):13944-51. PubMed ID: 26083766 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. Wu F; Zhang X; Zhao T; Li L; Xie M; Chen R ACS Appl Mater Interfaces; 2015 Feb; 7(6):3773-81. PubMed ID: 25629768 [TBL] [Abstract][Full Text] [Related]
5. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VO(x)-impregnated 0.5Li2MnO3-0.5LiNi(0.4)Co(0.2)Mn(0.4)O2 cathode. Park KS; Benayad A; Park MS; Choi W; Im D Chem Commun (Camb); 2010 Jun; 46(23):4190-2. PubMed ID: 20458377 [TBL] [Abstract][Full Text] [Related]
6. AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. Sun S; Yin Y; Wan N; Wu Q; Zhang X; Pan D; Bai Y; Lu X ChemSusChem; 2015 Aug; 8(15):2544-50. PubMed ID: 26105748 [TBL] [Abstract][Full Text] [Related]
7. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Carroll KJ; Qian D; Fell C; Calvin S; Veith GM; Chi M; Baggetto L; Meng YS Phys Chem Chem Phys; 2013 Jul; 15(26):11128-38. PubMed ID: 23722534 [TBL] [Abstract][Full Text] [Related]
8. Multi-Functional Surface Engineering for Li-Excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties. Bian X; Fu Q; Pang Q; Gao Y; Wei Y; Zou B; Du F; Chen G ACS Appl Mater Interfaces; 2016 Feb; 8(5):3308-18. PubMed ID: 26799857 [TBL] [Abstract][Full Text] [Related]
9. Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries. Kaliyappan K; Liu J; Lushington A; Li R; Sun X ChemSusChem; 2015 Aug; 8(15):2537-43. PubMed ID: 26119638 [TBL] [Abstract][Full Text] [Related]
10. Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. Qiu B; Wang J; Xia Y; Wei Z; Han S; Liu Z ACS Appl Mater Interfaces; 2014 Jun; 6(12):9185-93. PubMed ID: 24857766 [TBL] [Abstract][Full Text] [Related]
11. Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries. Kim Y Phys Chem Chem Phys; 2013 May; 15(17):6400-5. PubMed ID: 23525240 [TBL] [Abstract][Full Text] [Related]
12. Challenges of "going nano": enhanced electrochemical performance of cobalt oxide nanoparticles by carbothermal reduction and in situ carbon coating. Bresser D; Paillard E; Niehoff P; Krueger S; Mueller F; Winter M; Passerini S Chemphyschem; 2014 Jul; 15(10):2177-85. PubMed ID: 24723308 [TBL] [Abstract][Full Text] [Related]
13. Improving the electrochemical properties of LiNi(0.5)Co(0.2)Mn(0.3)O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries. Wang J; Yu Y; Li B; Fu T; Xie D; Cai J; Zhao J Phys Chem Chem Phys; 2015 Dec; 17(47):32033-43. PubMed ID: 26573985 [TBL] [Abstract][Full Text] [Related]
14. Understanding the Role of NH₄F and Al₂O₃ Surface Co-modification on Lithium-Excess Layered Oxide Li1.2Ni0.2Mn0.6O₂. Liu H; Qian D; Verde MG; Zhang M; Baggetto L; An K; Chen Y; Carroll KJ; Lau D; Chi M; Veith GM; Meng YS ACS Appl Mater Interfaces; 2015 Sep; 7(34):19189-200. PubMed ID: 26287963 [TBL] [Abstract][Full Text] [Related]
15. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). Hy S; Felix F; Rick J; Su WN; Hwang BJ J Am Chem Soc; 2014 Jan; 136(3):999-1007. PubMed ID: 24364760 [TBL] [Abstract][Full Text] [Related]
16. A Versatile Coating Strategy to Highly Improve the Electrochemical Properties of Layered Oxide LiMO₂ (M = Ni0.5Mn0.5 and Ni1/3Mn1/3Co1/3). Zhao E; Chen M; Chen D; Xiao X; Hu Z ACS Appl Mater Interfaces; 2015 Dec; 7(49):27096-105. PubMed ID: 26599838 [TBL] [Abstract][Full Text] [Related]
17. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
18. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
19. Understanding the Origin of Enhanced Performances in Core-Shell and Concentration-Gradient Layered Oxide Cathode Materials. Song D; Hou P; Wang X; Shi X; Zhang L ACS Appl Mater Interfaces; 2015 Jun; 7(23):12864-72. PubMed ID: 26017733 [TBL] [Abstract][Full Text] [Related]
20. Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification. Wang S; Li Y; Wu J; Zheng B; McDonald MJ; Yang Y Phys Chem Chem Phys; 2015 Apr; 17(15):10151-9. PubMed ID: 25790778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]